期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于数据融合长短期记忆的大型医疗设备异常检测模型研究 被引量:4
1
作者 王玲玲 李昕 +1 位作者 邢鲁民 韦韧 《中国医学装备》 2023年第4期134-138,共5页
目的:构建基于数据融合长短期记忆(DF-LSTM)的大型医疗设备异常检测模型,用以发掘设备异常,减少设备宕机概率。方法:借助医疗设备日志信息,从医疗设备厂家获取异常标注规则,提取医院计算机断层扫描(CT)设备的传感器日志数据16 643 688条... 目的:构建基于数据融合长短期记忆(DF-LSTM)的大型医疗设备异常检测模型,用以发掘设备异常,减少设备宕机概率。方法:借助医疗设备日志信息,从医疗设备厂家获取异常标注规则,提取医院计算机断层扫描(CT)设备的传感器日志数据16 643 688条,使用滑动窗口方法对其分割生成日志序列,最终获得53 114个日志序列,以按照时间窗口分割的日志序列为输入,以异常与否为输出,构建基于DF-LSTM的大型医疗设备异常检测模型,并进行训练和验证,对比使用交叉熵损失函数的DF-LSTM异常检测模型与本研究使用焦点损失(focalloss)函数的DF-LSTM异常检测模型的精确率、召回率以及F1分数(F1-score)。结果:基于DF-LSTM大型医疗设备异常检测模型的精确率、召回率及F1-score分别达到99.615%、98.969%和0.993分,较使用交叉熵损失函数的DF-LSTM异常检测模型均有约1%的提升。结论:基于DFLSTM的大型医疗设备异常检测模型具有较好的表现,能够极好地提取日志序列信息,有效识别异常日志序列,减少误判和错判情况,提高大型医疗设备运维人员工作效率,减少因大型医疗设备宕机而造成的损失。 展开更多
关键词 异常检测 深度学习 数据融合长短期记忆(DF-LSTM) 大数据
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部