期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于音频事件检测和分类的音频监控系统背景模型自适应方法研究 被引量:1
1
作者 张爱英 倪崇嘉 《计算机科学》 CSCD 北大核心 2016年第9期310-314,共5页
随着监控系统中音频传感器应用的与日俱增,音频事件检测与分类已成为一个重要的研究课题。音频系统所处的音频环境(不同场所、不同噪声)非常复杂,以致检测与分类音频事件异常困难。因此,进行背景模型自适应从而适应不断变化的音频环境... 随着监控系统中音频传感器应用的与日俱增,音频事件检测与分类已成为一个重要的研究课题。音频系统所处的音频环境(不同场所、不同噪声)非常复杂,以致检测与分类音频事件异常困难。因此,进行背景模型自适应从而适应不断变化的音频环境变得十分重要。提出了利用受限的最大似然线性回归方法对背景模型进行自适应。采用实际监控场景中的音频数据和模拟录制数据,研究了背景模型自适应方法以及如何有效地进行背景模型自适应。实验结果表明背景模型自适应可以提高目标声音事件的检测性能,减少系统误报。 展开更多
关键词 音频事件检测与分类 背景模型自适应 受限的最大似然线性回归 监控系统
下载PDF
资源稀缺蒙语语音识别研究 被引量:1
2
作者 张爱英 倪崇嘉 《计算机科学》 CSCD 北大核心 2017年第10期318-322,共5页
随着语音识别技术的发展,资源稀缺语言的语音识别系统的研究吸引了更广泛的关注。以蒙语为目标识别语言,研究了在资源稀缺的情况下(如仅有10小时的带标注的语音)如何利用其他多语言信息提高识别系统的性能。借助基于多语言深度神经网络... 随着语音识别技术的发展,资源稀缺语言的语音识别系统的研究吸引了更广泛的关注。以蒙语为目标识别语言,研究了在资源稀缺的情况下(如仅有10小时的带标注的语音)如何利用其他多语言信息提高识别系统的性能。借助基于多语言深度神经网络的跨语言迁移学习和基于多语言深度Bottleneck神经网络的抽取特征可以获得更具有区分度的声学模型。通过搜索引擎以及网络爬虫的定向抓取获得大量的网页数据,有助于获得文本数据,以增强语言模型的性能。融合多个不同识别结果以进一步提高识别精度。与基线系统相比,多种系统融合的识别绝对错误率减少12%。 展开更多
关键词 资源稀缺 多语言深度神经网络 Web语言模型
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部