The effect of functionalized graphene on the growth and development of Vicia faba L.was investigated by analyzing its impact on the composition and diversity of the microbial community in rhizosphere peat soil.Seedlin...The effect of functionalized graphene on the growth and development of Vicia faba L.was investigated by analyzing its impact on the composition and diversity of the microbial community in rhizosphere peat soil.Seedlings of V.faba planted in this peat soil were treated with either distilled water(CK)or 25 mg·L^(−1)(G25)of functionalized graphene solution.Results showed that the height and root length of V.faba seedlings in the G25 group were significantly larger than those in CK group.The microbial com-munity was analyzed by amplifying and sequencing the 16S rRNA gene V_(3)-V_(4) region of bacteria and internal transcribed spacer re-gion of fungi in rhizosphere soil using Illumina MiSeq technology.Alpha and beta diversity analysis indicated that functionalized graphene increased the richness and diversity of bacteria and fungi in the V.faba rhizosphere peat soil.The abundances of three ni-trogen cycling-related bacteria,Hydrogenophaga,Sphingomonas and Nitrosomonadaceae,were also altered after treatment with the functionalized graphene.The relative abundance of Basilicum,related to soil phosphorus solubilization,decreased in the fungal com-munity,while the relative abundance of Clonostachys and Dimorphospora,which exhibited strong biological control over numerous fungal plant pathogens,nematodes and insects,increased in the soil after functionalized graphene treatment.Redundancy analysis re-vealed that the potential of hydrogen(pH),organic matter,and total phosphorus contributed the most to the changes in bacterial and fungal community composition in the rhizosphere soil.Overall,our findings suggested that the addition of functionalized graphene altered the relative abundances of nitrogen and phosphorus cycling-related microorganisms in peat soil,promoting changes in the physicochemical properties of the soil and ultimately leading to the improved growth of V.faba plants.展开更多
Two coordination polymers were synthesized by hydrothermal reaction,namely,[Cd(H_(3)cpbda)(2,2′‑bipy)(H_(2)O)]_(n)(1)and[Mn(H_(3)cpbda)(phen)(H_(2)O)]_(n)(2),where H_(5)cpbda=5,5′‑[(5‑carboxy‑1,3‑phenyl)bis(oxy)]tri...Two coordination polymers were synthesized by hydrothermal reaction,namely,[Cd(H_(3)cpbda)(2,2′‑bipy)(H_(2)O)]_(n)(1)and[Mn(H_(3)cpbda)(phen)(H_(2)O)]_(n)(2),where H_(5)cpbda=5,5′‑[(5‑carboxy‑1,3‑phenyl)bis(oxy)]triisophthalic acid,2,2′‑bipy=2,2′‑bipyridine,phen=1,10‑phenanthroline.The two complexes were characterized by single‑crystal X‑ray diffraction,powder diffraction,infrared spectroscopy,and thermogravimetric analysis.Complexes 1 and 2 are“V”‑shaped 1D chains,and the molecules form 2D(1)and 3D framework(2)structures through weakπ…πstacking.Furthermore,complex 1 was dispersed in an aqueous solution and its fluorescence intensity demonstrated excellent stability.Complex 1 can specifically detect ciprofloxacin in urine with a detection limit of 1.91×10^(-8)mol·L^(-1).CCDC:2359498,1;2359499,2.展开更多
CNTs-Cu and graphite-Cu composites were separately prepared by powder metallurgy technique under the same consolidation processing. Tribological behavior of the composites with electric current was investigated by usi...CNTs-Cu and graphite-Cu composites were separately prepared by powder metallurgy technique under the same consolidation processing. Tribological behavior of the composites with electric current was investigated by using a pin-on-disk friction and wear tester. The results show that the friction coefficient and wear rate of the composites decrease with increasing the reinforcement content, and increase with increasing the electric current density; the effects of electric current are more obvious on tribological properties of graphite-Cu composites than on CNTs-Cu composites; for graphite-Cu composites the dominant wear mechanisms are electric arc erosion and adhesive wear, while for CNTs-Cu composites are adhesive wear.展开更多
文摘The effect of functionalized graphene on the growth and development of Vicia faba L.was investigated by analyzing its impact on the composition and diversity of the microbial community in rhizosphere peat soil.Seedlings of V.faba planted in this peat soil were treated with either distilled water(CK)or 25 mg·L^(−1)(G25)of functionalized graphene solution.Results showed that the height and root length of V.faba seedlings in the G25 group were significantly larger than those in CK group.The microbial com-munity was analyzed by amplifying and sequencing the 16S rRNA gene V_(3)-V_(4) region of bacteria and internal transcribed spacer re-gion of fungi in rhizosphere soil using Illumina MiSeq technology.Alpha and beta diversity analysis indicated that functionalized graphene increased the richness and diversity of bacteria and fungi in the V.faba rhizosphere peat soil.The abundances of three ni-trogen cycling-related bacteria,Hydrogenophaga,Sphingomonas and Nitrosomonadaceae,were also altered after treatment with the functionalized graphene.The relative abundance of Basilicum,related to soil phosphorus solubilization,decreased in the fungal com-munity,while the relative abundance of Clonostachys and Dimorphospora,which exhibited strong biological control over numerous fungal plant pathogens,nematodes and insects,increased in the soil after functionalized graphene treatment.Redundancy analysis re-vealed that the potential of hydrogen(pH),organic matter,and total phosphorus contributed the most to the changes in bacterial and fungal community composition in the rhizosphere soil.Overall,our findings suggested that the addition of functionalized graphene altered the relative abundances of nitrogen and phosphorus cycling-related microorganisms in peat soil,promoting changes in the physicochemical properties of the soil and ultimately leading to the improved growth of V.faba plants.
文摘Two coordination polymers were synthesized by hydrothermal reaction,namely,[Cd(H_(3)cpbda)(2,2′‑bipy)(H_(2)O)]_(n)(1)and[Mn(H_(3)cpbda)(phen)(H_(2)O)]_(n)(2),where H_(5)cpbda=5,5′‑[(5‑carboxy‑1,3‑phenyl)bis(oxy)]triisophthalic acid,2,2′‑bipy=2,2′‑bipyridine,phen=1,10‑phenanthroline.The two complexes were characterized by single‑crystal X‑ray diffraction,powder diffraction,infrared spectroscopy,and thermogravimetric analysis.Complexes 1 and 2 are“V”‑shaped 1D chains,and the molecules form 2D(1)and 3D framework(2)structures through weakπ…πstacking.Furthermore,complex 1 was dispersed in an aqueous solution and its fluorescence intensity demonstrated excellent stability.Complex 1 can specifically detect ciprofloxacin in urine with a detection limit of 1.91×10^(-8)mol·L^(-1).CCDC:2359498,1;2359499,2.
基金Project (2007CB607603) supported by the National Basic Research Program of China
文摘CNTs-Cu and graphite-Cu composites were separately prepared by powder metallurgy technique under the same consolidation processing. Tribological behavior of the composites with electric current was investigated by using a pin-on-disk friction and wear tester. The results show that the friction coefficient and wear rate of the composites decrease with increasing the reinforcement content, and increase with increasing the electric current density; the effects of electric current are more obvious on tribological properties of graphite-Cu composites than on CNTs-Cu composites; for graphite-Cu composites the dominant wear mechanisms are electric arc erosion and adhesive wear, while for CNTs-Cu composites are adhesive wear.