In this study, chicken manure and Caragana korshinskii Kom powder were used as the main raw materials with different amounts of biochar added to test four aerobic composting treatment groups A, B, C and D with laborat...In this study, chicken manure and Caragana korshinskii Kom powder were used as the main raw materials with different amounts of biochar added to test four aerobic composting treatment groups A, B, C and D with laboratory composting fermenters and testing apparatus, and new insight into biochar’s nitrogen conservation mechanism was gotten, based on the experimental data and related exploration such as the physical and chemical properties of the final products, the changing interactions among nutrient elements and other elements, and the relationship between substrate degradation and the amount of biochar used as well as the best formula for reducing ammonia emission. The results showed that the proper proportion of the added biochar to the other elements was conducive to less ammonia emission and nitrogen loss during the aerobic composting. The composting effect of Treatment C (biochar at 20%) was the optimal in the test, where in the composting temperature rose the most rapid and the earliest to the maximum temperature 52.5℃, with the least nitrogen loss. An effective, safe and high-quality resource utilization of chicken manure was established through the aerobic composting with reasonable material mixture proportion.展开更多
基金Supported by Science and Technology Key Program of Shanxi Province(20150311016-3)~~
文摘In this study, chicken manure and Caragana korshinskii Kom powder were used as the main raw materials with different amounts of biochar added to test four aerobic composting treatment groups A, B, C and D with laboratory composting fermenters and testing apparatus, and new insight into biochar’s nitrogen conservation mechanism was gotten, based on the experimental data and related exploration such as the physical and chemical properties of the final products, the changing interactions among nutrient elements and other elements, and the relationship between substrate degradation and the amount of biochar used as well as the best formula for reducing ammonia emission. The results showed that the proper proportion of the added biochar to the other elements was conducive to less ammonia emission and nitrogen loss during the aerobic composting. The composting effect of Treatment C (biochar at 20%) was the optimal in the test, where in the composting temperature rose the most rapid and the earliest to the maximum temperature 52.5℃, with the least nitrogen loss. An effective, safe and high-quality resource utilization of chicken manure was established through the aerobic composting with reasonable material mixture proportion.