期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
影像组学结合机器学习在鉴别脊柱结核与转移瘤中的价值研究
被引量:
4
1
作者
樊知昌
甄俊平
+4 位作者
卫小春
杨洁
徐阳
井清
赵静静
《临床放射学杂志》
北大核心
2022年第6期1110-1116,共7页
目的分析脊柱结核(TBS)与脊柱转移瘤(MST)患者受累椎体的MRI表现与影像组学特征,评价基于MRI特征的逻辑回归(Logistic)模型与基于影像组学特征的机器学习模型的诊断效能。方法搜集本院经病原学检查与手术病理证实的TBS与MST患者,利用Log...
目的分析脊柱结核(TBS)与脊柱转移瘤(MST)患者受累椎体的MRI表现与影像组学特征,评价基于MRI特征的逻辑回归(Logistic)模型与基于影像组学特征的机器学习模型的诊断效能。方法搜集本院经病原学检查与手术病理证实的TBS与MST患者,利用Logistic分析MRI特征。提取受累椎体T_(2)WI脂肪抑制序列(T_(2)-FS)的影像组学特征,组内相关系数(ICC)评价组学特征值测量的可重复性。依次使用t检验、SelectKBest以及最小绝对收缩和选择算子(LASSO)筛选特征。利用交叉验证(CV)划分数据集,随机森林(RF)及支持向量机(SVM)模型在训练集上进行监督学习,在测试集上进行评价,并与Logistic模型相比较。受试者工作特征(ROC)曲线及决策曲线分析(DCA)分别用来评价机器学习的分类效能及实际临床净收益,校准曲线评估模型的预测误差,Z检验用来比较ROC曲线下面积(AUC)之间的差异。结果101例患者被纳入样本(51例TBS,50例MST),筛选到3个MRI特征构建Logistic模型,6个影像组学特征(ICC均>0.75)进行机器学习。训练集上RF的AUC为0.997(95%CI 0.994~1.000),SVM为0.991(95%CI 0.981~1.000),差异无统计学意义(P=0.250)。Logistic的AUC为0.871(95%CI 0.800~0.941),低于测试集上的RF:0.993(95%CI 0.986~1.000)与SVM:0.989(95%CI 0.979~1.000)(P均<0.05)。DCA表明,RF的净获益优于SVM,优于Logistic。校准曲线显示三个模型预测概率与真实概率间的差异无统计学意义(P均>0.05),预测误差均值分别为0.019(RF)、0.019(SVM)、0.052(Logistic)。结论基于受累椎体的影像组学特征进行机器学习鉴别TBS与MST是可行的,其结果优于基于MRI特征的Logistic模型,对于术前减少侵入性检查与指导治疗有着重大意义。
展开更多
关键词
影像组学
机器学习
脊柱
结核
转移瘤
原文传递
题名
影像组学结合机器学习在鉴别脊柱结核与转移瘤中的价值研究
被引量:
4
1
作者
樊知昌
甄俊平
卫小春
杨洁
徐阳
井清
赵静静
机构
山西
医科大
学医学影像学院
山西医科大学第二医院
影像科
山西医科大学第二医院
骨科
(
山西省
骨
与软组织
损伤
修复
重点
实验室
)
出处
《临床放射学杂志》
北大核心
2022年第6期1110-1116,共7页
基金
山西省回国留学人员科研资助项目(编号:2014-077)。
文摘
目的分析脊柱结核(TBS)与脊柱转移瘤(MST)患者受累椎体的MRI表现与影像组学特征,评价基于MRI特征的逻辑回归(Logistic)模型与基于影像组学特征的机器学习模型的诊断效能。方法搜集本院经病原学检查与手术病理证实的TBS与MST患者,利用Logistic分析MRI特征。提取受累椎体T_(2)WI脂肪抑制序列(T_(2)-FS)的影像组学特征,组内相关系数(ICC)评价组学特征值测量的可重复性。依次使用t检验、SelectKBest以及最小绝对收缩和选择算子(LASSO)筛选特征。利用交叉验证(CV)划分数据集,随机森林(RF)及支持向量机(SVM)模型在训练集上进行监督学习,在测试集上进行评价,并与Logistic模型相比较。受试者工作特征(ROC)曲线及决策曲线分析(DCA)分别用来评价机器学习的分类效能及实际临床净收益,校准曲线评估模型的预测误差,Z检验用来比较ROC曲线下面积(AUC)之间的差异。结果101例患者被纳入样本(51例TBS,50例MST),筛选到3个MRI特征构建Logistic模型,6个影像组学特征(ICC均>0.75)进行机器学习。训练集上RF的AUC为0.997(95%CI 0.994~1.000),SVM为0.991(95%CI 0.981~1.000),差异无统计学意义(P=0.250)。Logistic的AUC为0.871(95%CI 0.800~0.941),低于测试集上的RF:0.993(95%CI 0.986~1.000)与SVM:0.989(95%CI 0.979~1.000)(P均<0.05)。DCA表明,RF的净获益优于SVM,优于Logistic。校准曲线显示三个模型预测概率与真实概率间的差异无统计学意义(P均>0.05),预测误差均值分别为0.019(RF)、0.019(SVM)、0.052(Logistic)。结论基于受累椎体的影像组学特征进行机器学习鉴别TBS与MST是可行的,其结果优于基于MRI特征的Logistic模型,对于术前减少侵入性检查与指导治疗有着重大意义。
关键词
影像组学
机器学习
脊柱
结核
转移瘤
Keywords
Radiomics
Machine learning
Spine
Tuberculosis
Metastatic
分类号
R529.2 [医药卫生—内科学]
R738.1 [医药卫生—肿瘤]
R445.2 [医药卫生—影像医学与核医学]
原文传递
题名
作者
出处
发文年
被引量
操作
1
影像组学结合机器学习在鉴别脊柱结核与转移瘤中的价值研究
樊知昌
甄俊平
卫小春
杨洁
徐阳
井清
赵静静
《临床放射学杂志》
北大核心
2022
4
原文传递
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部