The observation of geomagnetic field variations is an important approach to studying earthquake precursors.Since 1987,the China Earthquake Administration has explored this seismomagnetic relationship.In particular,the...The observation of geomagnetic field variations is an important approach to studying earthquake precursors.Since 1987,the China Earthquake Administration has explored this seismomagnetic relationship.In particular,they studied local magnetic field anomalies over the Chinese mainland for earthquake prediction.Owing to the years of research on the seismomagnetic relationship,earthquake prediction experts have concluded that the compressive magnetic effect,tectonic magnetic effect,electric magnetic fluid effect,and other factors contribute to preearthquake magnetic anomalies.However,this involves a small magnitude of magnetic field changes.It is difficult to relate them to the abnormal changes of the extremely large magnetic field in regions with extreme earthquakes owing to the high cost of professional geomagnetic equipment,thereby limiting large-scale deployment.Moreover,it is difficult to obtain strong magnetic field changes before an earthquake.The Tianjin Earthquake Agency has developed low-cost geomagnetic field observation equipment through the Beijing–Tianjin–Hebei geomagnetic equipment test project.The new system was used to test the availability of equipment and determine the findings based on big data..展开更多
In this study,based on the body wave arrival data of 5506 earthquakes recorded by 32 fi xed stations and 94 temporary stations in Yangbi and surrounding areas,the source parameters of Yangbi Ms6.4 earthquake sequence ...In this study,based on the body wave arrival data of 5506 earthquakes recorded by 32 fi xed stations and 94 temporary stations in Yangbi and surrounding areas,the source parameters of Yangbi Ms6.4 earthquake sequence and three-dimensional(3-D)fi ne Vp,Vs,and Vp/Vs were inverted by using the consistency-constrained double-diff erence tomography method.The results showed that the focal depth after relocation was mostly in the range of 3–10 km,evidently nearly horizontally distributed,and concentrated in the weak area of the high-velocity body or at the side of the high-low-velocity body transition zone toward the high-velocity body,showing a good corresponding relationship with the velocity structure.The velocity structure in the Yangbi area has remarkably uneven characteristics.The seismic activity area is dominated by high-velocity bodies prone to brittle fracture near the surface.As the depth increases,low-velocity anomalies appear.A signifi cant diff erence was observed in the wave velocity ratio between the upper and lower sides of the seismically dense strip.Based on the focal mechanism of the Yangbi Ms6.4 earthquake and the fine 3-D velocity structure,this article concludes that the Yangbi Ms6.4 earthquake was caused by a strong regional tectonic stress concentrated in the relatively weak area by hard high-velocity bodies on the northwest sides.The Ms5.6 foreshock broke the inherent balance of regional stress and promoted the occurrence of the Yangbi Ms6.4 mainshock.Afterward,the stress was adjusted to a new equilibrium state through a large number of aftershocks,forming a foreshock–mainshock–aftershock type of seismic activity model.Based on the activity law of the Yangbi Ms6.4 earthquake sequence and characteristics of the 3D velocity structure distribution,this paper speculates that the seismogenic structure of the Yangbi earthquake was possibly a northwest strike-slip buried fault with a depth of 3–10 km on the southwest side of the Weixi–Qiaohou fault.展开更多
In this study,on the basis of absolute first-arrival times of 84756 P-and S-waves from 6085 earthquakes recorded at 56 fixed stations in Yibin and surrounding areas in China from January 2009 to January 2019,focal par...In this study,on the basis of absolute first-arrival times of 84756 P-and S-waves from 6085 earthquakes recorded at 56 fixed stations in Yibin and surrounding areas in China from January 2009 to January 2019,focal parameters and three-dimensional(3 D)body-wave high-resolution velocity structures at depths of 0–30 km were retrieved by double-difference tomography.Results show that there is a good correspondence between the spatial distribution of the relocated earthquakes and velocity structures,which were concentrated mainly in the high-velocity-anomaly region or edge of high-velocity region.Velocity structure of P-and S-waves in the Yibin area clearly shows lateral inhomogeneity.The distribution characteristics of the P-and S-waves near the surface are closely related to the geomorphology and geologic structure.The low-velocity anomaly appears at the depth of 15–25 km,which is affected by the lower crust current.The Junlian–Gongxian and Gongxian–Changning earthquake areas,which are the two most earthquake-prone areas in the Yibin region,clearly differ in earthquake distribution and tectonic characteristics.We analyzed the structural characteristics of the Junlian–Gongxian and Gongxian–Changning earthquake areas on the basis of the 3 D bodywave velocity structures in the Yibin region.We found that although most seismicity in the Yibin area is caused by fluid injection,the spatial position of seismicity is controlled by the velocity structures of the middle and upper crust and local geologic structure.Fine-scale 3 D velocity structures in the Yibin area provide important local reference information for further understanding the crustal medium,seismogenic structure,and seismicity.展开更多
In this paper,using natural earthquake P-wave arrival time data recorded by the seismic network in the surrounding area of Madoi,the three-dimensional fine P-wave crustal velocity structure at depths above 60 km in th...In this paper,using natural earthquake P-wave arrival time data recorded by the seismic network in the surrounding area of Madoi,the three-dimensional fine P-wave crustal velocity structure at depths above 60 km in the epicenter of the Madoi Ms7.4 earthquake was inverted using the double-difference seismic tomography method.On the basis of the relocation of the source of the aftershock sequence,we summarized the strip-shaped distribution characteristics along the strike of the Jiangcuo fault,revealing the significant heterogeneity of the crustal velocity structure in the source area.Research has found that most of the Madoi Ms7.4 aftershocks were located in the weak area of the high-speed anomaly in the upper crust.The focal depth changed with the velocity structure,showing obvious fluctuation and segmentation characteristics.There was a good correspondence between the spatial distribution and the velocity structure.The high-velocity bodies of the upper crust in the hypocenter area provided a medium environment for earthquake rupture,the low-velocity bodies of the middle crust formed the deep material,and the migration channel and the undulating shape of the high-speed body in the lower crust corroborated the strong pushing action in the region.The results confirmed that under the continuous promotion of tectonic stress in the Madoi area,the high-speed body of the Jiangcuo fault blocked the migration of weak materials in the middle crust.When the stress accumulation exceeded the limit,the Madoi Ms7.4 earthquake occurred.Meanwhile,the nonuniform velocity structure near the fault plane determined the location of the main shock and the spatiotemporal distribution of the aftershock sequence.展开更多
基金supported by the Spark Program of Earthquake Science and Technology(No.XH23003C).
文摘The observation of geomagnetic field variations is an important approach to studying earthquake precursors.Since 1987,the China Earthquake Administration has explored this seismomagnetic relationship.In particular,they studied local magnetic field anomalies over the Chinese mainland for earthquake prediction.Owing to the years of research on the seismomagnetic relationship,earthquake prediction experts have concluded that the compressive magnetic effect,tectonic magnetic effect,electric magnetic fluid effect,and other factors contribute to preearthquake magnetic anomalies.However,this involves a small magnitude of magnetic field changes.It is difficult to relate them to the abnormal changes of the extremely large magnetic field in regions with extreme earthquakes owing to the high cost of professional geomagnetic equipment,thereby limiting large-scale deployment.Moreover,it is difficult to obtain strong magnetic field changes before an earthquake.The Tianjin Earthquake Agency has developed low-cost geomagnetic field observation equipment through the Beijing–Tianjin–Hebei geomagnetic equipment test project.The new system was used to test the availability of equipment and determine the findings based on big data..
基金supported by the Research Project of Tianjin Earthquake Agency (No. Yb202101, Zd202101)
文摘In this study,based on the body wave arrival data of 5506 earthquakes recorded by 32 fi xed stations and 94 temporary stations in Yangbi and surrounding areas,the source parameters of Yangbi Ms6.4 earthquake sequence and three-dimensional(3-D)fi ne Vp,Vs,and Vp/Vs were inverted by using the consistency-constrained double-diff erence tomography method.The results showed that the focal depth after relocation was mostly in the range of 3–10 km,evidently nearly horizontally distributed,and concentrated in the weak area of the high-velocity body or at the side of the high-low-velocity body transition zone toward the high-velocity body,showing a good corresponding relationship with the velocity structure.The velocity structure in the Yangbi area has remarkably uneven characteristics.The seismic activity area is dominated by high-velocity bodies prone to brittle fracture near the surface.As the depth increases,low-velocity anomalies appear.A signifi cant diff erence was observed in the wave velocity ratio between the upper and lower sides of the seismically dense strip.Based on the focal mechanism of the Yangbi Ms6.4 earthquake and the fine 3-D velocity structure,this article concludes that the Yangbi Ms6.4 earthquake was caused by a strong regional tectonic stress concentrated in the relatively weak area by hard high-velocity bodies on the northwest sides.The Ms5.6 foreshock broke the inherent balance of regional stress and promoted the occurrence of the Yangbi Ms6.4 mainshock.Afterward,the stress was adjusted to a new equilibrium state through a large number of aftershocks,forming a foreshock–mainshock–aftershock type of seismic activity model.Based on the activity law of the Yangbi Ms6.4 earthquake sequence and characteristics of the 3D velocity structure distribution,this paper speculates that the seismogenic structure of the Yangbi earthquake was possibly a northwest strike-slip buried fault with a depth of 3–10 km on the southwest side of the Weixi–Qiaohou fault.
基金supported by the Research Project of Tianjin Earthquake Agency(No.yb201901)Seismic Regime Tracking Project of CEA(No.2019010127)Combination Project with Monitoring,Prediction and Scientific Research of Earthquake Technology,CEA(No.3JH-201901006)
文摘In this study,on the basis of absolute first-arrival times of 84756 P-and S-waves from 6085 earthquakes recorded at 56 fixed stations in Yibin and surrounding areas in China from January 2009 to January 2019,focal parameters and three-dimensional(3 D)body-wave high-resolution velocity structures at depths of 0–30 km were retrieved by double-difference tomography.Results show that there is a good correspondence between the spatial distribution of the relocated earthquakes and velocity structures,which were concentrated mainly in the high-velocity-anomaly region or edge of high-velocity region.Velocity structure of P-and S-waves in the Yibin area clearly shows lateral inhomogeneity.The distribution characteristics of the P-and S-waves near the surface are closely related to the geomorphology and geologic structure.The low-velocity anomaly appears at the depth of 15–25 km,which is affected by the lower crust current.The Junlian–Gongxian and Gongxian–Changning earthquake areas,which are the two most earthquake-prone areas in the Yibin region,clearly differ in earthquake distribution and tectonic characteristics.We analyzed the structural characteristics of the Junlian–Gongxian and Gongxian–Changning earthquake areas on the basis of the 3 D bodywave velocity structures in the Yibin region.We found that although most seismicity in the Yibin area is caused by fluid injection,the spatial position of seismicity is controlled by the velocity structures of the middle and upper crust and local geologic structure.Fine-scale 3 D velocity structures in the Yibin area provide important local reference information for further understanding the crustal medium,seismogenic structure,and seismicity.
基金support:Seismic Regime Tracking Project of CEA (2023010123)Combination Project with Monitoring,Prediction and Scientific Research of Earthquake Technology,CEA (3JH-202302019).
文摘In this paper,using natural earthquake P-wave arrival time data recorded by the seismic network in the surrounding area of Madoi,the three-dimensional fine P-wave crustal velocity structure at depths above 60 km in the epicenter of the Madoi Ms7.4 earthquake was inverted using the double-difference seismic tomography method.On the basis of the relocation of the source of the aftershock sequence,we summarized the strip-shaped distribution characteristics along the strike of the Jiangcuo fault,revealing the significant heterogeneity of the crustal velocity structure in the source area.Research has found that most of the Madoi Ms7.4 aftershocks were located in the weak area of the high-speed anomaly in the upper crust.The focal depth changed with the velocity structure,showing obvious fluctuation and segmentation characteristics.There was a good correspondence between the spatial distribution and the velocity structure.The high-velocity bodies of the upper crust in the hypocenter area provided a medium environment for earthquake rupture,the low-velocity bodies of the middle crust formed the deep material,and the migration channel and the undulating shape of the high-speed body in the lower crust corroborated the strong pushing action in the region.The results confirmed that under the continuous promotion of tectonic stress in the Madoi area,the high-speed body of the Jiangcuo fault blocked the migration of weak materials in the middle crust.When the stress accumulation exceeded the limit,the Madoi Ms7.4 earthquake occurred.Meanwhile,the nonuniform velocity structure near the fault plane determined the location of the main shock and the spatiotemporal distribution of the aftershock sequence.