期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
机器学习结合影像组学特征预测急性脑卒中机械取栓预后
被引量:
1
1
作者
陈罕奇
张浩
+5 位作者
葛晓敏
彭明洋
谢光辉
陈国中
殷信道
许瑜
《南京医科大学学报(自然科学版)》
CAS
CSCD
北大核心
2022年第8期1165-1170,共6页
目的:结合机器学习与影像组学特征构建预测急性缺血性脑卒中(acute inschemic strohe,AIS)机械取栓治疗后预后的模型并进行验证。方法:回顾性分析在南京市第一医院就诊的AIS患者,按随机数字表法分为训练集(n=105)和测试集(n=50),另收集...
目的:结合机器学习与影像组学特征构建预测急性缺血性脑卒中(acute inschemic strohe,AIS)机械取栓治疗后预后的模型并进行验证。方法:回顾性分析在南京市第一医院就诊的AIS患者,按随机数字表法分为训练集(n=105)和测试集(n=50),另收集在南京医科大学附属常州市第二人民医院就诊的AIS患者(n=45)作为外部验证。采用A.K.软件提取弥散加权成像(diffusion weighted imaging,DWI)和灌注加权成像(perfusion weighted imaging,PWI)病变区的影像特征,应用最低绝对收缩和选择算子(least absolute shrinkage and selection operator,LASSO)回归模型筛选最佳影像组学特征,基于所选特征通过支持向量机(support vector machine,SVM)分类器建立预测急性脑卒中预后预测模型,使用受试者操作特征(receiver operating characteristic,ROC)曲线评价模型的预测效能,并应用验证集对模型进行外部验证。结果:每例患者DWI和PWI图像各提取1316个影像组学特征,降维后筛选出40个与卒中预后高度相关的特征。ROC曲线分析显示联合DWI+PWI的模型预测训练集和测试集的曲线下面积(area under curve,AUC)(训练集:0.981;测试集:0.891)均高于单序列模型(DWI或PWI),其准确度分别达0.943、0.900。外部验证结果显示基于DWI+PWI的模型同样优于单序列(DWI或PWI)的预测模型,灵敏度和特异度分别为0.864、0.783,其准确度可达0.822。结论:结合机器学习与影像组学特征构建的模型可预测AIS机械取栓治疗预后,并具有较好的泛化能力。
展开更多
关键词
卒中
机器学习
弥散加权成像
灌注加权成像
预后
下载PDF
职称材料
题名
机器学习结合影像组学特征预测急性脑卒中机械取栓预后
被引量:
1
1
作者
陈罕奇
张浩
葛晓敏
彭明洋
谢光辉
陈国中
殷信道
许瑜
机构
南京医科大学附属
常州
市第二人民
医院
放射科
南京医科大学附属南京
医院
(南京市第一
医院
)医学影像科
常州金东方医院放射科
出处
《南京医科大学学报(自然科学版)》
CAS
CSCD
北大核心
2022年第8期1165-1170,共6页
文摘
目的:结合机器学习与影像组学特征构建预测急性缺血性脑卒中(acute inschemic strohe,AIS)机械取栓治疗后预后的模型并进行验证。方法:回顾性分析在南京市第一医院就诊的AIS患者,按随机数字表法分为训练集(n=105)和测试集(n=50),另收集在南京医科大学附属常州市第二人民医院就诊的AIS患者(n=45)作为外部验证。采用A.K.软件提取弥散加权成像(diffusion weighted imaging,DWI)和灌注加权成像(perfusion weighted imaging,PWI)病变区的影像特征,应用最低绝对收缩和选择算子(least absolute shrinkage and selection operator,LASSO)回归模型筛选最佳影像组学特征,基于所选特征通过支持向量机(support vector machine,SVM)分类器建立预测急性脑卒中预后预测模型,使用受试者操作特征(receiver operating characteristic,ROC)曲线评价模型的预测效能,并应用验证集对模型进行外部验证。结果:每例患者DWI和PWI图像各提取1316个影像组学特征,降维后筛选出40个与卒中预后高度相关的特征。ROC曲线分析显示联合DWI+PWI的模型预测训练集和测试集的曲线下面积(area under curve,AUC)(训练集:0.981;测试集:0.891)均高于单序列模型(DWI或PWI),其准确度分别达0.943、0.900。外部验证结果显示基于DWI+PWI的模型同样优于单序列(DWI或PWI)的预测模型,灵敏度和特异度分别为0.864、0.783,其准确度可达0.822。结论:结合机器学习与影像组学特征构建的模型可预测AIS机械取栓治疗预后,并具有较好的泛化能力。
关键词
卒中
机器学习
弥散加权成像
灌注加权成像
预后
Keywords
stroke
machine learning
diffusion weighted imaging
perfusion weighted imaging
outcome
分类号
R445.2 [医药卫生—影像医学与核医学]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
机器学习结合影像组学特征预测急性脑卒中机械取栓预后
陈罕奇
张浩
葛晓敏
彭明洋
谢光辉
陈国中
殷信道
许瑜
《南京医科大学学报(自然科学版)》
CAS
CSCD
北大核心
2022
1
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部