期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
基于多尺度聚合和共享注意力的注视估计模型
1
作者 施赛龙 方智文 《计算机应用》 CSCD 北大核心 2024年第7期2047-2054,共8页
注视估计是从人脸图像中估计3D注视方向的方法,其中与注视直接相关的眼睛细节信息在人脸图像中集中且对注视估计具有显著影响。然而现有的注视估计模型忽略了小尺度的眼睛细节,且容易被图像特征中与注视无关的信息淹没。为此,提出一种... 注视估计是从人脸图像中估计3D注视方向的方法,其中与注视直接相关的眼睛细节信息在人脸图像中集中且对注视估计具有显著影响。然而现有的注视估计模型忽略了小尺度的眼睛细节,且容易被图像特征中与注视无关的信息淹没。为此,提出一种基于多尺度聚合和共享注意力的模型以增强特征的表达能力。首先,使用分流自注意力聚合图像中不同尺度的眼睛和人脸信息,并引导模型学习不同尺度对象之间的相关性,以此处理模型对图像中眼睛细节的遗漏问题;其次,通过建立共享注意力来捕获图像之间的共享特征,减少对注视无关特征的关注;最后,结合多尺度聚合和共享注意力,进一步提高注视估计的精度。在公开数据集MPIIFaceGaze、Gaze360、Gaze360_Processed和GAFA-Head上,所提模型的平均角度误差比GazeTR(Gaze TRansformer)降低了5.74%、4.09%、4.82%和10.55%。在Gaze360背对相机的困难图像上,所提模型的平均角度误差比GazeTR降低了4.70%。实验结果表明,所提模型能有效聚合多尺度的注视信息和共享注意力,提高注视估计的准确性和鲁棒性。 展开更多
关键词 注视估计 共享注意力 多尺度聚合 共享特征 计算机视觉
下载PDF
绿茶对人类情绪、认知功能影响的研究进展 被引量:3
2
作者 王慧 朱建兵 +5 位作者 孙韦 常严 徐雅洁 吴振洲 易佩伟 杨晓冬 《中国食物与营养》 2020年第1期69-72,共4页
饮用绿茶不仅可以改善正常人的情绪和认知功能,还可以延缓认知功能退化,提高认知功能障碍患者认知水平。本文综述了绿茶及表没食子儿茶素没食子酸酯(EGCG)、L-茶氨酸、咖啡因等有效成分对情绪和认知功能的作用和机制。
关键词 绿茶 EGCG L-茶氨酸 咖啡因 认知功能
下载PDF
利用特征距离信息引导决策融合的多模态生物特征识别方法 被引量:3
3
作者 周晨怡 黄靖 +1 位作者 杨丰 刘娅琴 《科学技术与工程》 北大核心 2020年第10期4036-4042,共7页
传统的决策层融合作为识别系统最末端的融合层次,具有信息量不足的缺点,对于各模态分类性能差异较大的系统,识别率低且可靠性差。提出了一种基于特征距离信息的决策层融合方法,应用于包含虹膜、手掌静脉和手指静脉的多模态生物特征识别... 传统的决策层融合作为识别系统最末端的融合层次,具有信息量不足的缺点,对于各模态分类性能差异较大的系统,识别率低且可靠性差。提出了一种基于特征距离信息的决策层融合方法,应用于包含虹膜、手掌静脉和手指静脉的多模态生物特征识别系统。以置信度作为权重,通过权重来探索不同模态生物特征识别的性能差异,实现了有效特征信息的提取,并且提高了系统的抗干扰能力。该方法充分考虑了权重因子与特征距离信息和模态分类性能参数之间的复杂关系,将模态的决策偏好通过置信度转化为定量表征,不仅使各模态权重因子的求解更具科学性,而且提高了识别系统在复杂情境下的自适应能力。实验结果表明,该融合方法的识别精度与抗干扰能力优于其他决策层融合算法。 展开更多
关键词 多模态生物特征 决策层融合 自适应权重 特征信息
下载PDF
肌骨超声图像特征检测及拼接 被引量:12
4
作者 颜焕欢 张培镇 +3 位作者 王伊侬 李璇 阳维 王青 《中国图象图形学报》 CSCD 北大核心 2020年第5期1032-1042,共11页
目的 肌骨超声宽景图像易出现解剖结构错位、断裂等现象,其成像算法中的特征检测影响宽景图像的质量,也是超声图像配准、分析等算法的关键步骤,但目前仍未有相关研究明确指出适合提取肌骨超声图像特征点的算法.本文利用结合SIFT(scale i... 目的 肌骨超声宽景图像易出现解剖结构错位、断裂等现象,其成像算法中的特征检测影响宽景图像的质量,也是超声图像配准、分析等算法的关键步骤,但目前仍未有相关研究明确指出适合提取肌骨超声图像特征点的算法.本文利用结合SIFT(scale invariant feature transform)描述子的FAST(features from accelerated segment test)算法以及SIFT、SURF(speeded-up robust features)、ORB (oriented FAST and rotated binary robust independent elementaryfeatures (BRIEF))算法对肌骨超声图像序列进行图像拼接,并对各算法的性能进行比较评估,为肌骨超声图像配准、宽景成像提供可参考的特征检测解决方案.方法 采集5组正常股四头肌的超声图像序列,每组再采样10幅图像.利用经典的图像拼接算法进行肌骨图像的特征检测以及图像拼接.分别利用上述4种算法提取肌骨超声图像的特征点;对特征点进行特征匹配,估算出图像间的形变矩阵;对所有待拼接的图像进行坐标变换以及融合处理,得到拼接全景图,并在特征检测性能、特征匹配性能、图像配准性能以及拼接效果等方面对4种算法进行评估比较.结果 实验结果表明,与SIFT、SURF、ORB算法相比,FAST-SIFT算法所提取的特征点分布更均匀,可以检测到大部分肌纤维的端点,且特征点检测时间最短,约4 ms,其平均匹配对数最多,是其他特征检测算法的2~5倍,其互信息和归一化互相关系数均值分别为1.016和0.748,均高于其他3种特征检测算法,表明其图像配准精度更高.且FAST-SIFT算法的图像拼接效果更好,没有明显的解剖结构错位、断裂、拼接不连贯等现象.结论 与SIFT、SURF、ORB算法相比,FAST-SIFT算法是更适合提取肌骨超声图像特征点的特征检测算法,在图像配准精度等方面都具有一定的优势. 展开更多
关键词 肌骨超声图像 特征检测 特征匹配 图像配准 图像拼接
原文传递
融合型UNet++网络的超声胎儿头部边缘检测 被引量:13
5
作者 邢妍妍 杨丰 +1 位作者 唐宇姣 张利云 《中国图象图形学报》 CSCD 北大核心 2020年第2期366-377,共12页
目的超声胎儿头部边缘检测是胎儿头围测量的关键步骤,因胎儿头部超声图像边界模糊、超声声影造成图像中胎儿颅骨部分缺失、羊水及子宫壁形成与胎儿头部纹理及灰度相似的结构等因素干扰,给超声胎儿头部边缘检测及头围测量带来一定的难度... 目的超声胎儿头部边缘检测是胎儿头围测量的关键步骤,因胎儿头部超声图像边界模糊、超声声影造成图像中胎儿颅骨部分缺失、羊水及子宫壁形成与胎儿头部纹理及灰度相似的结构等因素干扰,给超声胎儿头部边缘检测及头围测量带来一定的难度。本文提出一种基于端到端的神经网络超声图像分割方法,用于胎儿头部边缘检测。方法以UNet++神经网络结构为基础,结合UNet++最后一层特征,构成融合型UNet++网络。训练过程中,为缓解模型训练过拟合问题,在每一卷积层后接一个空间dropout层。具体思路是通过融合型UNet++深度神经网络提取超声胎儿头部图像特征,通过胎儿头部区域概率图预测,输出胎儿头部语义分割的感兴趣区域。进一步获取胎儿的头部边缘关键点信息,并采用边缘曲线拟合方法拟合边缘,最终测量出胎儿头围大小。结果针对现有2维超声胎儿头围自动测量公开数据集HC18,以Dice系数、Hausdorff距离(HD)、头围绝对差值(AD)等指标评估本文模型性能,结果Dice系数为98.06%,HD距离为1.21±0.69 mm,头围测量AD为1.84±1.73 mm。在妊娠中期测试数据中,Dice系数为98.24%,HD距离为1.15±0.59 mm,头围测量AD为1.76±1.55 mm。在生物医学图像分析平台Grand Challenge上HC18数据集已提交结果中,融合型UNet++的Dice系数排在第3名,HD排在第2名,AD排在第10名。结论与经典超声胎儿头围测量方法及已有的机器学习方法应用研究相比,融合型UNet++能有效克服超声边界模糊、边缘缺失等干扰,精准分割出胎儿头部感兴趣区域,获取边缘关键点信息。与现有神经网络框架相比,融合型UNet++能充分利用上下文相关信息与局部定位功能,在妊娠中期的头围测量中,本文方法明显优于其他方法。 展开更多
关键词 医学图像分割 UNet++ 胎儿头部边缘检测 胎儿头围测量 深度学习 超声图像
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部