目的 利用无人机(unmanned aerial vehicle, UAV)巡检识别航拍图像中的工程车辆对于减少电力安全事故的发生具有重要意义。采用人工提取特征的经典模式识别方法或YOLOv5(you only look once v5)等深度学习算法识别无人机电力巡检航拍图...目的 利用无人机(unmanned aerial vehicle, UAV)巡检识别航拍图像中的工程车辆对于减少电力安全事故的发生具有重要意义。采用人工提取特征的经典模式识别方法或YOLOv5(you only look once v5)等深度学习算法识别无人机电力巡检航拍图像中的工程车辆,存在识别准确率低、模型参数规模大等问题。针对上述问题,提出一种改进的胶囊网络识别航拍图像中的工程车辆。方法 采用多层密集连接型方法改进原始胶囊网络结构,以提取图像中工程车辆更多的特征;改进了胶囊网络的动态路由方法,以提高胶囊网络的抗干扰能力;探索了网络层数和动态路由算法中关键参数对识别准确率的影响,以找到识别准确率最高时的参数。结果 实验结果表明:1)在所采用的算法模型中,本文方法的平均识别率(mean average precision, mAP)达到94.56%,明显高于其他方法。2)网络层数对识别准确率有很大影响,但二者之间并非单调线性关系。在本文的应用场景中,5层胶囊网络的识别准确率最高;此外,动态路由算法改进与否并不会影响识别准确率跟随网络层数的变化趋势。3)胶囊网络层数增加会降低识别效率,但是并不会明显增加参数规模,且参数规模与mAP无明显关联。结论 本文方法在获得较高识别准确率的同时具有参数规模较小的特点,为无人机在机载端识别目标物奠定了基础。展开更多
文摘目的 利用无人机(unmanned aerial vehicle, UAV)巡检识别航拍图像中的工程车辆对于减少电力安全事故的发生具有重要意义。采用人工提取特征的经典模式识别方法或YOLOv5(you only look once v5)等深度学习算法识别无人机电力巡检航拍图像中的工程车辆,存在识别准确率低、模型参数规模大等问题。针对上述问题,提出一种改进的胶囊网络识别航拍图像中的工程车辆。方法 采用多层密集连接型方法改进原始胶囊网络结构,以提取图像中工程车辆更多的特征;改进了胶囊网络的动态路由方法,以提高胶囊网络的抗干扰能力;探索了网络层数和动态路由算法中关键参数对识别准确率的影响,以找到识别准确率最高时的参数。结果 实验结果表明:1)在所采用的算法模型中,本文方法的平均识别率(mean average precision, mAP)达到94.56%,明显高于其他方法。2)网络层数对识别准确率有很大影响,但二者之间并非单调线性关系。在本文的应用场景中,5层胶囊网络的识别准确率最高;此外,动态路由算法改进与否并不会影响识别准确率跟随网络层数的变化趋势。3)胶囊网络层数增加会降低识别效率,但是并不会明显增加参数规模,且参数规模与mAP无明显关联。结论 本文方法在获得较高识别准确率的同时具有参数规模较小的特点,为无人机在机载端识别目标物奠定了基础。