BACKGROUND:Adeno-associated virus(AAV)gene therapy has been proven to be reliable and safe for the treatment of osteoarthritis in recent years.However,given the complexity of osteoarthritis pathogenesis,single gene ma...BACKGROUND:Adeno-associated virus(AAV)gene therapy has been proven to be reliable and safe for the treatment of osteoarthritis in recent years.However,given the complexity of osteoarthritis pathogenesis,single gene manipulation for the treatment of osteoarthritis may not produce satisfactory results.Previous studies have shown that nuclear factorκB could promote the inflammatory pathway in osteoarthritic chondrocytes,and bone morphogenetic protein 4(BMP4)could promote cartilage regeneration.OBJECTIVE:To test whether combined application of AAV-p65shRNA and AAV-BMP4 will yield the synergistic effect on chondrocytes regeneration and osteoarthritis treatment.METHODS:Viral particles containing AAV-p65-shRNA and AAV-BMP4 were prepared.Their efficacy in inhibiting inflammation in chondrocytes and promoting chondrogenesis was assessed in vitro and in vivo by transfecting AAV-p65-shRNA or AAV-BMP4 into cells.The experiments were divided into five groups:PBS group;osteoarthritis group;AAV-BMP4 group;AAV-p65shRNA group;and BMP4-p65shRNA 1:1 group.Samples were collected at 4,12,and 24 weeks postoperatively.Tissue staining,including safranin O and Alcian blue,was applied after collecting articular tissue.Then,the optimal ratio between the two types of transfected viral particles was further investigated to improve the chondrogenic potential of mixed cells in vivo.RESULTS AND CONCLUSION:The combined application of AAV-p65shRNA and AAV-BMP4 together showed a synergistic effect on cartilage regeneration and osteoarthritis treatment.Mixed cells transfected with AAV-p65shRNA and AAV-BMP4 at a 1:1 ratio produced the most extracellular matrix synthesis(P<0.05).In vivo results also revealed that the combination of the two viruses had the highest regenerative potential for osteoarthritic cartilage(P<0.05).In the present study,we also discovered that the combined therapy had the maximum effect when the two viruses were administered in equal proportions.Decreasing either p65shRNA or BMP4 transfected cells resulted in less collagen II synthesis.This implies that inhibiting inflammation by p65shRNA and promoting regeneration by BMP4 are equally important for osteoarthritis treatment.These findings provide a new strategy for the treatment of early osteoarthritis by simultaneously inhibiting cartilage inflammation and promoting cartilage repair.展开更多
Microglia,originating from primitive macrophages in the yolk sac,serves as both immune system defenders and regulators of homeostasis.These cells exhibit two primary polarization states:conventionally activated(M1)and...Microglia,originating from primitive macrophages in the yolk sac,serves as both immune system defenders and regulators of homeostasis.These cells exhibit two primary polarization states:conventionally activated(M1)and alternatively activated(M2).The polarization of microglia plays a crucial role in influencing inflammatory disorders,metabolic imbalances,and neural degeneration.This process is implicated in various aspects of ocular diseases,especially age-related macular degeneration(AMD),including inflammation,oxidative stress and pathological angiogenesis.The distinct functional phenotypes of microglia impact disease progression and prognosis.Thus,regulating the polarization or functional phenotype of microglia at different stages of AMD holds promise for personalized therapeutic approaches.This comprehensive review outlines the involvement of microglia polarization in both physiological and pathological conditions,emphasizing its relevance in AMD.The discussion underscores the potential of polarization as a foundation for personalized treatment strategies for AMD.展开更多
Three zinc(Ⅱ),cobalt(Ⅱ),and nickel(Ⅱ)coordination polymers,namely[Zn(μ^(3-)cpna)(μ-dpea)_(0.5)]_(n)(1),[Co(μ^(3-)cpna)(μ-dpey)_(0.5)]_(n)(2),and[Ni(μ^(3-)cpna)(μ-dpey)_(0.5)(H_(2)O)]_(n)(3),have been construc...Three zinc(Ⅱ),cobalt(Ⅱ),and nickel(Ⅱ)coordination polymers,namely[Zn(μ^(3-)cpna)(μ-dpea)_(0.5)]_(n)(1),[Co(μ^(3-)cpna)(μ-dpey)_(0.5)]_(n)(2),and[Ni(μ^(3-)cpna)(μ-dpey)_(0.5)(H_(2)O)]_(n)(3),have been constructed hydrothermally using H_(2)cpna(5-(4-carboxyphenoxy)nicotinic acid),dpea(1,2-di(4-pyridyl)ethane),dpey(1,2-di(4-pyridyl)ethylene),and zinc,cobalt,and nickel chlorides at 160℃.The products were isolated as stable crystalline solids and were characterized by IR spectra,elemental analyses,thermogravimetric analyses,and single-crystal X-ray diffraction analyses.Single-crystal X-ray diffraction analyses revealed that three compounds crystallize in the triclinic system,space group P1.Compounds 1-3 show 2D layer structures.The catalytic activities in the Knoevenagel condensation reaction of these compounds were investigated.Compounds 1 and 2 exhibit effective catalytic activities in the Knoevenagel condensa-tion reaction at room temperature.For this reaction,various parameters were optimized,followed by the investiga-tion of the substrate scope.CCDC:2335676,1;2335677,2;2335678,3.展开更多
Defect engineering has become a promising approach to improve the performance of hydrogen evolution reaction(HER)catalysts.Non-noble transition metal-based catalysts(TMCs)have shown significant promise as effective al...Defect engineering has become a promising approach to improve the performance of hydrogen evolution reaction(HER)catalysts.Non-noble transition metal-based catalysts(TMCs)have shown significant promise as effective alternatives to traditional platinum-group catalysts,attracting considerable attention.However,the industrial application of TMCs in electrocatalytic hydrogen production necessitates further optimization to boost both catalytic activity and stability.This review comprehensively examines the types,fabrication methods,and characterization techniques of various defects that enhance catalytic HER activity.Key advancements include optimizing defect concentration and distribution,coupling heteroatoms with vacancies,and leveraging the synergy between bond lengths and defects.In-depth discussions highlight the electronic structure and catalytic mechanisms elucidated through in-situ characterization and density functional theory calculations.Additionally,future directions are identified,exploring novel defect types,emphasizing precision synthesis methods,industrial-scale preparation techniques,and strategies to enhance structural stability and understanding the in-depth catalytic mechanism.This review aims to inspire further research and development in defect-engineered HER catalysts,providing pathways for high efficiency and cost-effectiveness in hydrogen production.展开更多
Background,aim,and scope Yardang is a kind of typical wind-eroded landform in arid zones both on Earth and other planets.Their geomorphic process records the surface changes and climate,which may play a vital role in ...Background,aim,and scope Yardang is a kind of typical wind-eroded landform in arid zones both on Earth and other planets.Their geomorphic process records the surface changes and climate,which may play a vital role in exploring the coupled landform-atmosphere system in arid zones.Recently,significant progresses have been made in this research field,and a review is still absent,which is the aim of the paper.Materials and methods Previous studies on the distribution,composition,morphology,and climatic driving force of yardang landform were reviewed.Results Earth yardang’s three evolutionary models were generalized:morphology evolution model,altitude evolution model and climate driven evolution model.Extraterrestrial yardang and its evolution are also summarized:the morphology is dominated by long ridges on Venus and Titan,and three yardang evolution hypotheses and an indirect dating method based on stratigraphic contact have been studied on Mars.Discussion In this study,firstly,the definition and morphology of yardang were described to define its characteristics.Secondly,we argue that yardang evolution has two dimensions:short-term variation and longterm variation.In the short-term variation,the morphological evolution of yardang on earth can be divided into four stages:embryonic stage,juvenile stage,mature stage,and demise stage.In the long-term variation,the evolution of yardang on earth is climate-driven,i.e.,it is controlled by atmospheric circulation changes during glacial-interglacial periods.Thirdly,yardang research on extraterrestrial bodies was also summarized:yardang has been found on Mars,Venus,and Titan,and the research focus by far are on geomorphology only.Conclusions(1)Yardang landform is an erosion landform with alternating ridges and troughs,with main form of whale back shape and fluctuations in the range of aspect ratios;(2)the short-term variation of yardang is manifested in its morphological evolution and height change,while the long-term variation is climate-driven;(3)based on Earth yardang,extraterrestrial yardang research has been carried out on Mars,Venus,and Titan.Recommendations and perspectives We then proposed that:(1)yardang formation ages,due to the erosion characteristics,are difficult to constraint;(2)the wind erosion capacity in the yardang areas might have been severely underestimated,making it essential to re-evaluate the previous paleoclimate reconstruction in the closed basins with limited chronological data;(3)yardang evolution is driven by climate change,but the coupling relationship between the yardang geomorphy and the air circulation is still unclear.Finally,future research directions:(1)more chronological data are needed,as well as the wind erosion capacity for yardang initiation and development;(2)the co-evolution of mid-low latitude landforms involved in yardang long-term variation and its relationship with global atmospheric circulation.展开更多
Objective Triple-negative breast cancer(TNBC)is the breast cancer subtype with the worst prognosis,and lacks effective therapeutic targets.Colony stimulating factors(CSFs)are cytokines that can regulate the production...Objective Triple-negative breast cancer(TNBC)is the breast cancer subtype with the worst prognosis,and lacks effective therapeutic targets.Colony stimulating factors(CSFs)are cytokines that can regulate the production of blood cells and stimulate the growth and development of immune cells,playing an important role in the malignant progression of TNBC.This article aims to construct a novel prognostic model based on the expression of colony stimulating factors-related genes(CRGs),and analyze the sensitivity of TNBC patients to immunotherapy and drug therapy.Methods We downloaded CRGs from public databases and screened for differentially expressed CRGs between normal and TNBC tissues in the TCGA-BRCA database.Through LASSO Cox regression analysis,we constructed a prognostic model and stratified TNBC patients into high-risk and low-risk groups based on the colony stimulating factors-related genes risk score(CRRS).We further analyzed the correlation between CRRS and patient prognosis,clinical features,tumor microenvironment(TME)in both high-risk and low-risk groups,and evaluated the relationship between CRRS and sensitivity to immunotherapy and drug therapy.Results We identified 842 differentially expressed CRGs in breast cancer tissues of TNBC patients and selected 13 CRGs for constructing the prognostic model.Kaplan-Meier survival curves,time-dependent receiver operating characteristic curves,and other analyses confirmed that TNBC patients with high CRRS had shorter overall survival,and the predictive ability of CRRS prognostic model was further validated using the GEO dataset.Nomogram combining clinical features confirmed that CRRS was an independent factor for the prognosis of TNBC patients.Moreover,patients in the high-risk group had lower levels of immune infiltration in the TME and were sensitive to chemotherapeutic drugs such as 5-fluorouracil,ipatasertib,and paclitaxel.Conclusion We have developed a CRRS-based prognostic model composed of 13 differentially expressed CRGs,which may serve as a useful tool for predicting the prognosis of TNBC patients and guiding clinical treatment.Moreover,the key genes within this model may represent potential molecular targets for future therapies of TNBC.展开更多
目的建立小鼠脓毒症模型并进行评价,为研究脓毒症致病机制和开发抗炎药物提供模型动物。方法采用盲肠结扎穿孔法(cecal ligation and puncture,CLP)诱导小鼠脓毒症,通过动物生存、术后小鼠载菌量、血常规和血生化指标、细胞因子水平、...目的建立小鼠脓毒症模型并进行评价,为研究脓毒症致病机制和开发抗炎药物提供模型动物。方法采用盲肠结扎穿孔法(cecal ligation and puncture,CLP)诱导小鼠脓毒症,通过动物生存、术后小鼠载菌量、血常规和血生化指标、细胞因子水平、组织病理变化等方面对模型进行评价。结果小鼠的死亡率与盲肠结扎部位密切相关,盲肠结扎50%小鼠12 d存活率在40%左右,结扎75%小鼠4 d全部死亡(P<0.01)。与假手术组相比,50%结扎CLP小鼠血液和腹腔中载菌量增加,白细胞下降,差异有显著性(P<0.001)。CLP小鼠肝转氨酶ALT、AST和血清尿素氮BUN水平升高,差异具有显著性(P<0.01),炎症因子IL1α、IL6、IL10、MIP1α、MIP1β、TNFα水平升高。手术后48 h小鼠的肝和肺出现明显组织病理损伤。结论小鼠CLP模型具有典型的脓毒症病理特征,为后期研究抗炎药物的筛选提供了较好的动物模型。展开更多
Zn,Pb,Ga and Ge were separated and recovered from zinc refinery residues by stepwise leaching.In the first stage,by leaching with H2SO4 media,more than 90%of Zn and 99%of Ga were dissolved,leaving 92%of Ge in the leac...Zn,Pb,Ga and Ge were separated and recovered from zinc refinery residues by stepwise leaching.In the first stage,by leaching with H2SO4 media,more than 90%of Zn and 99%of Ga were dissolved,leaving 92%of Ge in the leaching residue.In the second stage,by leaching with HCl media,approximately 99%of Pb and less than 2%of Ge were selectively dissolved.Finally,the remaining 90%of Ge was extracted in 1 mol/L NaOH solution by destroying the correlation between SiO2 and Ge.XRD pattern of the leaching residue demonstrated that ZnSO4·H2O,PbSO4 and SiO2 were removed sequentially through the stepwise leaching.The proposed process achieved high recoveries of Zn,Pb,Ga and Ge,thus presenting a potential industrial application.展开更多
A novel collector 1-(2-hydroxyphenyl)hex-2-en-1-one oxime(HPHO)was synthesized from 2-hydroxy acetophenone and butyraldehyde.Its flotation performance and adsorption mechanism to malachite were investigated by flotati...A novel collector 1-(2-hydroxyphenyl)hex-2-en-1-one oxime(HPHO)was synthesized from 2-hydroxy acetophenone and butyraldehyde.Its flotation performance and adsorption mechanism to malachite were investigated by flotation test,zeta potential,Fourier transform infrared(FTIR)and X-ray photoelectron spectroscopy(XPS)analysis techniques.Compared with benzohydroxamic acid(BA),1-(2-hydroxyphenyl)ethan-1-one oxime(HPEO)and sodium isobutyl xanthate(SIBX),HPHO exhibited excellent collecting power to malachite without additional reagents,such as Na2S regulator and methyl isobutyl carbinol(MIBC)frother.Results of zeta potential indicated that HPHO was coated on malachite surfaces through a chemisorption process.FTIR and XPS data gave clear evidence for the formation of Cu−oxime complex on malachite surfaces after HPHO adsorption through the linkage between C=C,—OH,N—OH group and Cu species.展开更多
The commonly-employed material for thermal barrier coatings(TBCs)is 7 wt.%Y2O3 ZrO2(7YSZ),generally deposited by electron beam-physical vapor deposition(EB-PVD).Due to the increasing demand for higher operating temper...The commonly-employed material for thermal barrier coatings(TBCs)is 7 wt.%Y2O3 ZrO2(7YSZ),generally deposited by electron beam-physical vapor deposition(EB-PVD).Due to the increasing demand for higher operating temperature in aero-derivative gas turbines,a lot of effort has been made to prevent the premature failure of columnar 7YSZ TBCs,which is induced by the microstructure degradation,sintering and spallation after the deposition of infiltrated siliceous mineral(consisting of calcium magnesium aluminum silicate(CaO MgO Al2O3 SiO2,i.e.,CMAS)).A new method called Al-modification for columnar 7YSZ TBCs against CMAS corrosion was present.The Al film was magnetron-sputtered on the surface of the columnar 7YSZ TBCs,followed by performing vacuum heat treatment of the Al-deposited TBCs.During the heat treatment,the molten Al reacted with ZrO2 to formα-Al2O3 overlay that effectively hindered CMAS infiltration.Moreover,the Al film could evaporate and re-nucleate,leading to the generation of Al2O3 nanowires,which further restrained the moving of molten CMAS.展开更多
The joining of DP780 steel to Al5052 was conducted by laser lap welding,in which the metal vapor and spatters were monitored by a high-speed camera.A universal testing machine was used to test the mechanical propertie...The joining of DP780 steel to Al5052 was conducted by laser lap welding,in which the metal vapor and spatters were monitored by a high-speed camera.A universal testing machine was used to test the mechanical properties of the welded joints,and the changing law of lap tensile resistance with the laser welding parameters was analyzed.Optical microscope and scanning electron microscope were used to observe the macro-structure and micro-structure,respectively.Three different intermetallic compounds(IMCs)phases,i.e.banded Fe2Al5,FeAl2 and needle-like FeAl3 were generated at the steel/Al interface on microscopic observation.The aim of this research is to investigate the relationship among the lap tensile resistance,the welding parameters and the failure mode under different energy densities.Experimental results showed that the steel/Al joints have two different fracture modes at low heat input and high heat input.The failures happened along the heat-affected zone of the weld and along the steel/Al joint interface,respectively.And both of the two failure modes are brittle fractures.Additionally,cracks appeared at the fracture interface,and needle-like particle clusters were found in the fracture microstructure.展开更多
Electrochemical conversion of CO2 into fuel has been regarded as a promising approach to achieve the global carbon cycle.Herein,we report an efficient cobalt catalyst with a unique flower-like morphology synthesized b...Electrochemical conversion of CO2 into fuel has been regarded as a promising approach to achieve the global carbon cycle.Herein,we report an efficient cobalt catalyst with a unique flower-like morphology synthesized by a green and facile hydrothermal method,in which n-butylamine is used as the capping agent.The resultant catalyst shows superior electrocatalytic activity toward CO2 electroreduction,which is highly selective for generating formate with a Faraday efficiency of 63.4%.Electrochemical analysis reveals that the oxide on the surface is essential for the electrocatalysis of the CO2 reduction reaction.Cyclic voltammograms further suggest that this catalyst is highly active for the oxidation of reduced product,and can thus be seen as a bifunctional catalyst.展开更多
Oxidation pressure leaching was proposed to selectively dissolve Li from spent LiFePO_(4) batteries in a stoichiometric sulfuric acid solution.Using O_(2) as an oxidant and stoichiometric sulfuric acid as leaching age...Oxidation pressure leaching was proposed to selectively dissolve Li from spent LiFePO_(4) batteries in a stoichiometric sulfuric acid solution.Using O_(2) as an oxidant and stoichiometric sulfuric acid as leaching agent,above 97% of Li was leached into the solution,whereas more than 99% of Fe remained in the leaching residue,enabling a relatively low cost for one-step separation of Li and Fe.And then,by adjusting the pH of leachate,above 95% of Li was recovered in the form of the Li_(3)PO_(4) product through iron removal and chemical precipitation of phosphate.展开更多
Effect of Si and Ti on dynamic recrystallization(DRX)of Cu-15Ni-8 Sn alloy was studied using hot compression tests over deformation temperature range of 750-950℃and strain rate range of 0.001-10 s^-1.The results show...Effect of Si and Ti on dynamic recrystallization(DRX)of Cu-15Ni-8 Sn alloy was studied using hot compression tests over deformation temperature range of 750-950℃and strain rate range of 0.001-10 s^-1.The results show that the dynamic recrystallization behavior during hot deformation is significantly affected by the trace elements of Si and Ti.The addition of Si and Ti promotes the formation of Ni16Si7Ti6 particles during hot deformation,which promotes the nucleation of dynamic recrystallization by accelerating the transition from low-angle boundaries(LABs)to high-angle boundaries(HABs).Ni16Si7Ti6 particles further inhibit the growth of recrystallized grains through the pinning effect.Based on the dynamic recrystallization behavior,a processing map of the alloy is built up to obtain the optimal processing parameters.Guided by the processing map,a hot-extruded Cu-15 Ni-8Sn alloy with a fine-grained microstructure is obtained,which shows excellent elongation of 30%and ultimate tensile strength of 910 MPa.展开更多
文摘BACKGROUND:Adeno-associated virus(AAV)gene therapy has been proven to be reliable and safe for the treatment of osteoarthritis in recent years.However,given the complexity of osteoarthritis pathogenesis,single gene manipulation for the treatment of osteoarthritis may not produce satisfactory results.Previous studies have shown that nuclear factorκB could promote the inflammatory pathway in osteoarthritic chondrocytes,and bone morphogenetic protein 4(BMP4)could promote cartilage regeneration.OBJECTIVE:To test whether combined application of AAV-p65shRNA and AAV-BMP4 will yield the synergistic effect on chondrocytes regeneration and osteoarthritis treatment.METHODS:Viral particles containing AAV-p65-shRNA and AAV-BMP4 were prepared.Their efficacy in inhibiting inflammation in chondrocytes and promoting chondrogenesis was assessed in vitro and in vivo by transfecting AAV-p65-shRNA or AAV-BMP4 into cells.The experiments were divided into five groups:PBS group;osteoarthritis group;AAV-BMP4 group;AAV-p65shRNA group;and BMP4-p65shRNA 1:1 group.Samples were collected at 4,12,and 24 weeks postoperatively.Tissue staining,including safranin O and Alcian blue,was applied after collecting articular tissue.Then,the optimal ratio between the two types of transfected viral particles was further investigated to improve the chondrogenic potential of mixed cells in vivo.RESULTS AND CONCLUSION:The combined application of AAV-p65shRNA and AAV-BMP4 together showed a synergistic effect on cartilage regeneration and osteoarthritis treatment.Mixed cells transfected with AAV-p65shRNA and AAV-BMP4 at a 1:1 ratio produced the most extracellular matrix synthesis(P<0.05).In vivo results also revealed that the combination of the two viruses had the highest regenerative potential for osteoarthritic cartilage(P<0.05).In the present study,we also discovered that the combined therapy had the maximum effect when the two viruses were administered in equal proportions.Decreasing either p65shRNA or BMP4 transfected cells resulted in less collagen II synthesis.This implies that inhibiting inflammation by p65shRNA and promoting regeneration by BMP4 are equally important for osteoarthritis treatment.These findings provide a new strategy for the treatment of early osteoarthritis by simultaneously inhibiting cartilage inflammation and promoting cartilage repair.
文摘Microglia,originating from primitive macrophages in the yolk sac,serves as both immune system defenders and regulators of homeostasis.These cells exhibit two primary polarization states:conventionally activated(M1)and alternatively activated(M2).The polarization of microglia plays a crucial role in influencing inflammatory disorders,metabolic imbalances,and neural degeneration.This process is implicated in various aspects of ocular diseases,especially age-related macular degeneration(AMD),including inflammation,oxidative stress and pathological angiogenesis.The distinct functional phenotypes of microglia impact disease progression and prognosis.Thus,regulating the polarization or functional phenotype of microglia at different stages of AMD holds promise for personalized therapeutic approaches.This comprehensive review outlines the involvement of microglia polarization in both physiological and pathological conditions,emphasizing its relevance in AMD.The discussion underscores the potential of polarization as a foundation for personalized treatment strategies for AMD.
文摘Three zinc(Ⅱ),cobalt(Ⅱ),and nickel(Ⅱ)coordination polymers,namely[Zn(μ^(3-)cpna)(μ-dpea)_(0.5)]_(n)(1),[Co(μ^(3-)cpna)(μ-dpey)_(0.5)]_(n)(2),and[Ni(μ^(3-)cpna)(μ-dpey)_(0.5)(H_(2)O)]_(n)(3),have been constructed hydrothermally using H_(2)cpna(5-(4-carboxyphenoxy)nicotinic acid),dpea(1,2-di(4-pyridyl)ethane),dpey(1,2-di(4-pyridyl)ethylene),and zinc,cobalt,and nickel chlorides at 160℃.The products were isolated as stable crystalline solids and were characterized by IR spectra,elemental analyses,thermogravimetric analyses,and single-crystal X-ray diffraction analyses.Single-crystal X-ray diffraction analyses revealed that three compounds crystallize in the triclinic system,space group P1.Compounds 1-3 show 2D layer structures.The catalytic activities in the Knoevenagel condensation reaction of these compounds were investigated.Compounds 1 and 2 exhibit effective catalytic activities in the Knoevenagel condensa-tion reaction at room temperature.For this reaction,various parameters were optimized,followed by the investiga-tion of the substrate scope.CCDC:2335676,1;2335677,2;2335678,3.
文摘Defect engineering has become a promising approach to improve the performance of hydrogen evolution reaction(HER)catalysts.Non-noble transition metal-based catalysts(TMCs)have shown significant promise as effective alternatives to traditional platinum-group catalysts,attracting considerable attention.However,the industrial application of TMCs in electrocatalytic hydrogen production necessitates further optimization to boost both catalytic activity and stability.This review comprehensively examines the types,fabrication methods,and characterization techniques of various defects that enhance catalytic HER activity.Key advancements include optimizing defect concentration and distribution,coupling heteroatoms with vacancies,and leveraging the synergy between bond lengths and defects.In-depth discussions highlight the electronic structure and catalytic mechanisms elucidated through in-situ characterization and density functional theory calculations.Additionally,future directions are identified,exploring novel defect types,emphasizing precision synthesis methods,industrial-scale preparation techniques,and strategies to enhance structural stability and understanding the in-depth catalytic mechanism.This review aims to inspire further research and development in defect-engineered HER catalysts,providing pathways for high efficiency and cost-effectiveness in hydrogen production.
文摘Background,aim,and scope Yardang is a kind of typical wind-eroded landform in arid zones both on Earth and other planets.Their geomorphic process records the surface changes and climate,which may play a vital role in exploring the coupled landform-atmosphere system in arid zones.Recently,significant progresses have been made in this research field,and a review is still absent,which is the aim of the paper.Materials and methods Previous studies on the distribution,composition,morphology,and climatic driving force of yardang landform were reviewed.Results Earth yardang’s three evolutionary models were generalized:morphology evolution model,altitude evolution model and climate driven evolution model.Extraterrestrial yardang and its evolution are also summarized:the morphology is dominated by long ridges on Venus and Titan,and three yardang evolution hypotheses and an indirect dating method based on stratigraphic contact have been studied on Mars.Discussion In this study,firstly,the definition and morphology of yardang were described to define its characteristics.Secondly,we argue that yardang evolution has two dimensions:short-term variation and longterm variation.In the short-term variation,the morphological evolution of yardang on earth can be divided into four stages:embryonic stage,juvenile stage,mature stage,and demise stage.In the long-term variation,the evolution of yardang on earth is climate-driven,i.e.,it is controlled by atmospheric circulation changes during glacial-interglacial periods.Thirdly,yardang research on extraterrestrial bodies was also summarized:yardang has been found on Mars,Venus,and Titan,and the research focus by far are on geomorphology only.Conclusions(1)Yardang landform is an erosion landform with alternating ridges and troughs,with main form of whale back shape and fluctuations in the range of aspect ratios;(2)the short-term variation of yardang is manifested in its morphological evolution and height change,while the long-term variation is climate-driven;(3)based on Earth yardang,extraterrestrial yardang research has been carried out on Mars,Venus,and Titan.Recommendations and perspectives We then proposed that:(1)yardang formation ages,due to the erosion characteristics,are difficult to constraint;(2)the wind erosion capacity in the yardang areas might have been severely underestimated,making it essential to re-evaluate the previous paleoclimate reconstruction in the closed basins with limited chronological data;(3)yardang evolution is driven by climate change,but the coupling relationship between the yardang geomorphy and the air circulation is still unclear.Finally,future research directions:(1)more chronological data are needed,as well as the wind erosion capacity for yardang initiation and development;(2)the co-evolution of mid-low latitude landforms involved in yardang long-term variation and its relationship with global atmospheric circulation.
文摘Objective Triple-negative breast cancer(TNBC)is the breast cancer subtype with the worst prognosis,and lacks effective therapeutic targets.Colony stimulating factors(CSFs)are cytokines that can regulate the production of blood cells and stimulate the growth and development of immune cells,playing an important role in the malignant progression of TNBC.This article aims to construct a novel prognostic model based on the expression of colony stimulating factors-related genes(CRGs),and analyze the sensitivity of TNBC patients to immunotherapy and drug therapy.Methods We downloaded CRGs from public databases and screened for differentially expressed CRGs between normal and TNBC tissues in the TCGA-BRCA database.Through LASSO Cox regression analysis,we constructed a prognostic model and stratified TNBC patients into high-risk and low-risk groups based on the colony stimulating factors-related genes risk score(CRRS).We further analyzed the correlation between CRRS and patient prognosis,clinical features,tumor microenvironment(TME)in both high-risk and low-risk groups,and evaluated the relationship between CRRS and sensitivity to immunotherapy and drug therapy.Results We identified 842 differentially expressed CRGs in breast cancer tissues of TNBC patients and selected 13 CRGs for constructing the prognostic model.Kaplan-Meier survival curves,time-dependent receiver operating characteristic curves,and other analyses confirmed that TNBC patients with high CRRS had shorter overall survival,and the predictive ability of CRRS prognostic model was further validated using the GEO dataset.Nomogram combining clinical features confirmed that CRRS was an independent factor for the prognosis of TNBC patients.Moreover,patients in the high-risk group had lower levels of immune infiltration in the TME and were sensitive to chemotherapeutic drugs such as 5-fluorouracil,ipatasertib,and paclitaxel.Conclusion We have developed a CRRS-based prognostic model composed of 13 differentially expressed CRGs,which may serve as a useful tool for predicting the prognosis of TNBC patients and guiding clinical treatment.Moreover,the key genes within this model may represent potential molecular targets for future therapies of TNBC.
基金The authors are grateful for the financial supports from the National Natural Science Foundation of China(51804083,51704081)the National Key Research and Development Project(2018YFC1903104)+2 种基金the Natural Science Foundation of Guangdong Province,China(2019A1515011628)the Science and Technology Planning Project of Guangzhou(201904010106)of ChinaGuangdong Academy of Science Doctor Special Program of China(2020GDASYL-0104027,2019GDASYL-0105079,2019GDASYL-0302011,2019GDASYL-0402003).
文摘Zn,Pb,Ga and Ge were separated and recovered from zinc refinery residues by stepwise leaching.In the first stage,by leaching with H2SO4 media,more than 90%of Zn and 99%of Ga were dissolved,leaving 92%of Ge in the leaching residue.In the second stage,by leaching with HCl media,approximately 99%of Pb and less than 2%of Ge were selectively dissolved.Finally,the remaining 90%of Ge was extracted in 1 mol/L NaOH solution by destroying the correlation between SiO2 and Ge.XRD pattern of the leaching residue demonstrated that ZnSO4·H2O,PbSO4 and SiO2 were removed sequentially through the stepwise leaching.The proposed process achieved high recoveries of Zn,Pb,Ga and Ge,thus presenting a potential industrial application.
基金Projects(2018GDASCX-0934,2020GDASYL-20200302009)supported by Guangdong Academy of Sciences,China。
文摘A novel collector 1-(2-hydroxyphenyl)hex-2-en-1-one oxime(HPHO)was synthesized from 2-hydroxy acetophenone and butyraldehyde.Its flotation performance and adsorption mechanism to malachite were investigated by flotation test,zeta potential,Fourier transform infrared(FTIR)and X-ray photoelectron spectroscopy(XPS)analysis techniques.Compared with benzohydroxamic acid(BA),1-(2-hydroxyphenyl)ethan-1-one oxime(HPEO)and sodium isobutyl xanthate(SIBX),HPHO exhibited excellent collecting power to malachite without additional reagents,such as Na2S regulator and methyl isobutyl carbinol(MIBC)frother.Results of zeta potential indicated that HPHO was coated on malachite surfaces through a chemisorption process.FTIR and XPS data gave clear evidence for the formation of Cu−oxime complex on malachite surfaces after HPHO adsorption through the linkage between C=C,—OH,N—OH group and Cu species.
基金Project(2017YFB0306100) supported by the National Key Research&Development Plan of ChinaProjects(51801034,51771059) supported by the National Natural Science Foundation of China+3 种基金Projects(2018GDASCX-0949,2018GDASCX-0950,2017GDASCX-0111) supported by the Guangdong Academy of Sciences,ChinaProjects(2017B090916002,2017A070701027) supported by the Guangdong Technical Research Program,ChinaProjects(2016A030312015,2017A030310315) supported by the Natural Science Foundation of Guangdong Province,ChinaProjects(201605131008557,201707010385) supported by the Technical Research Program of Guangzhou City,China
文摘The commonly-employed material for thermal barrier coatings(TBCs)is 7 wt.%Y2O3 ZrO2(7YSZ),generally deposited by electron beam-physical vapor deposition(EB-PVD).Due to the increasing demand for higher operating temperature in aero-derivative gas turbines,a lot of effort has been made to prevent the premature failure of columnar 7YSZ TBCs,which is induced by the microstructure degradation,sintering and spallation after the deposition of infiltrated siliceous mineral(consisting of calcium magnesium aluminum silicate(CaO MgO Al2O3 SiO2,i.e.,CMAS)).A new method called Al-modification for columnar 7YSZ TBCs against CMAS corrosion was present.The Al film was magnetron-sputtered on the surface of the columnar 7YSZ TBCs,followed by performing vacuum heat treatment of the Al-deposited TBCs.During the heat treatment,the molten Al reacted with ZrO2 to formα-Al2O3 overlay that effectively hindered CMAS infiltration.Moreover,the Al film could evaporate and re-nucleate,leading to the generation of Al2O3 nanowires,which further restrained the moving of molten CMAS.
基金Project(51675104)supported by the National Natural Science Foundation of ChinaProject(202002020068)supported by the Guangzhou Municipal Special Fund Project for Scientific and Technological Innovation and Development,ChinaProject(2017KCXTD010)supported by the Innovation Team Project,Department of Education of Guangdong Province,China。
文摘The joining of DP780 steel to Al5052 was conducted by laser lap welding,in which the metal vapor and spatters were monitored by a high-speed camera.A universal testing machine was used to test the mechanical properties of the welded joints,and the changing law of lap tensile resistance with the laser welding parameters was analyzed.Optical microscope and scanning electron microscope were used to observe the macro-structure and micro-structure,respectively.Three different intermetallic compounds(IMCs)phases,i.e.banded Fe2Al5,FeAl2 and needle-like FeAl3 were generated at the steel/Al interface on microscopic observation.The aim of this research is to investigate the relationship among the lap tensile resistance,the welding parameters and the failure mode under different energy densities.Experimental results showed that the steel/Al joints have two different fracture modes at low heat input and high heat input.The failures happened along the heat-affected zone of the weld and along the steel/Al joint interface,respectively.And both of the two failure modes are brittle fractures.Additionally,cracks appeared at the fracture interface,and needle-like particle clusters were found in the fracture microstructure.
文摘Electrochemical conversion of CO2 into fuel has been regarded as a promising approach to achieve the global carbon cycle.Herein,we report an efficient cobalt catalyst with a unique flower-like morphology synthesized by a green and facile hydrothermal method,in which n-butylamine is used as the capping agent.The resultant catalyst shows superior electrocatalytic activity toward CO2 electroreduction,which is highly selective for generating formate with a Faraday efficiency of 63.4%.Electrochemical analysis reveals that the oxide on the surface is essential for the electrocatalysis of the CO2 reduction reaction.Cyclic voltammograms further suggest that this catalyst is highly active for the oxidation of reduced product,and can thus be seen as a bifunctional catalyst.
基金the financial supports from the National Natural Science Foundation of China(Nos.51804083,52104395,21906031)the Natural Science Foundation of Guangdong Province,China(No.2019A1515011628)+1 种基金the Science and Technology Planning Project of Guangdong Province,China(No.2017B090907026)the Special Program of Guangdong Academy of Sciences,China(Nos.2019GDASYL-0103069,2020GDASYL-0104027,2020GDASYL-0302004,2020GDASYL-0302009,2021GDASYL-0302004)。
文摘Oxidation pressure leaching was proposed to selectively dissolve Li from spent LiFePO_(4) batteries in a stoichiometric sulfuric acid solution.Using O_(2) as an oxidant and stoichiometric sulfuric acid as leaching agent,above 97% of Li was leached into the solution,whereas more than 99% of Fe remained in the leaching residue,enabling a relatively low cost for one-step separation of Li and Fe.And then,by adjusting the pH of leachate,above 95% of Li was recovered in the form of the Li_(3)PO_(4) product through iron removal and chemical precipitation of phosphate.
基金Project(2015A030312003) supported by the Guangdong Natural Science Foundation for Research Team,China
文摘Effect of Si and Ti on dynamic recrystallization(DRX)of Cu-15Ni-8 Sn alloy was studied using hot compression tests over deformation temperature range of 750-950℃and strain rate range of 0.001-10 s^-1.The results show that the dynamic recrystallization behavior during hot deformation is significantly affected by the trace elements of Si and Ti.The addition of Si and Ti promotes the formation of Ni16Si7Ti6 particles during hot deformation,which promotes the nucleation of dynamic recrystallization by accelerating the transition from low-angle boundaries(LABs)to high-angle boundaries(HABs).Ni16Si7Ti6 particles further inhibit the growth of recrystallized grains through the pinning effect.Based on the dynamic recrystallization behavior,a processing map of the alloy is built up to obtain the optimal processing parameters.Guided by the processing map,a hot-extruded Cu-15 Ni-8Sn alloy with a fine-grained microstructure is obtained,which shows excellent elongation of 30%and ultimate tensile strength of 910 MPa.