Rapid technological development and population growth are responsible for a series of imminent environmental problems and an ineluctable energy crisis.The application of semiconductor nanomaterials in photocatalysis o...Rapid technological development and population growth are responsible for a series of imminent environmental problems and an ineluctable energy crisis.The application of semiconductor nanomaterials in photocatalysis or photoelectrocatalysis(PEC)for either the degradation of contaminants in the environment or the generation of hydrogen as clean fuel is an effective approach to alleviate these problems.However,the efficiency of such processes remains suboptimal for real applications.Reasonable construction of a built-in electric field is considered to efficiently enhance carrier separation and reduce carrier recombination to improve catalytic performance.In the past decade,as a new method to enhance the built-in electric field,the piezoelectric effect from piezoelectric materials has been extensively studied.In this review,we provide an overview of the properties of piezoelectric materials and the mechanisms of piezoelectricity and ferroelectricity for a built-in electric field.Then,piezoelectric and ferroelectric polarization regulated built-in electric fields that mediate catalysis are discussed.Furthermore,the applications of piezoelectric semiconductor materials are also highlighted,including degradation of pollutants,bacteria disinfection,water splitting for H2 generation,and organic synthesis.We conclude by discussing the challenges in the field and the exciting opportunities to further improve piezo-catalytic efficiency.展开更多
The vertical sections of the La−Fe−B system were investigated using electron probe microanalysis and differential thermal analysis.Based on the microstructures and phase compositions of the as-cast and equilibrium all...The vertical sections of the La−Fe−B system were investigated using electron probe microanalysis and differential thermal analysis.Based on the microstructures and phase compositions of the as-cast and equilibrium alloys,together with their heat flow−temperature curves,phase diagrams for three vertical sections were drawn:La_(x)Fe_(82)B_(y)(x+y=18),La_(x)Fe_(70)B_(y)(x+y=30)and La_(x)Fe_(53)B_(y)(x+y=47),where x and y represent mass fraction of La and B,respectively,%.Additionally,according to the phase diagrams,the compound La2Fe14B was identified as a stable phase at high temperatures.It was found to be stable between 926.2 and 792.6℃;at low temperatures,however,it decomposed into α-La,α-Fe and LaFe_(4)B_(4),according to the reaction La_(2)Fe_(14)B→α-Fe+α-La+LaFe_(4)B_(4).展开更多
An energy model for the structure transformation of pile-ups of grain boundary dislocations(GBD)at the triple-junction of the grain boundary of ultrafine-grain materials was proposed.The energy of the pile-up of the G...An energy model for the structure transformation of pile-ups of grain boundary dislocations(GBD)at the triple-junction of the grain boundary of ultrafine-grain materials was proposed.The energy of the pile-up of the GBD in the system was calculated by the energy model,the critical geometric and mechanical conditions for the structure transformation of head dislocation of the pile-up were analyzed,and the influence of the number density of the dislocations and the angle between Burgers vectors of two decomposed dislocations on the transformation mode of head dislocation was discussed.The results show when the GBD is accumulated at triple junction,the head dislocation of the GBD is decomposed into two Burgers vectors of these dislocations unless the angle between the two vectors is less than 90°,and the increase of applied external stress can reduce the energy barrier of the dislocation decomposition.The mechanism that the ultrafine-grained metal material has both high strength and plasticity owing to the structure transformation of the pile-up of the GBD at the triple junction of the grain boundary is revealed.展开更多
The feasibility of producing superheavy nuclei in proton evaporation channels was systematically studied within the dinuclear system(DNS)model.Due to the Z=114 proton-shell,one can synthesize Fl isotopes in proton eva...The feasibility of producing superheavy nuclei in proton evaporation channels was systematically studied within the dinuclear system(DNS)model.Due to the Z=114 proton-shell,one can synthesize Fl isotopes in proton evaporation channels.We only considered the case of evaporating one proton first and then n neutrons in this work,other cases were ignored due to the small cross-section.The production cross sections of unknown isotopes ^(290,291)Fl in ^(38)S+^(255)Es reaction are the highest compared with ^(50)Ti+^(243)Np and ^(54)Cr+^(239)Pa reactions,and the maximum cross sections are 1.1 and 15.1 pb,respectively.^(42)S+^(254)Es is a promising candidate to approach the island of stability as the radioactive beam facilities are upgraded in the future,and the production cross sections of ^(291−294)Fl in that reaction are estimated to be 3.2,6.0,4.0,and 0.1 pb,respectively.展开更多
基金supported by the Youth Innovation Promotion Association of the Chinese Academy of Sciences(2015023)National Natural Science Foundation of China(81471784,51802115)+3 种基金Natural Science Foundation of Beijing(2172058)Natural Science Foundation of Shandong Province(ZR2018BEM010,ZR2019YQ21)Major Program of Shandong Province Natural Science Foundation(ZR2018ZC0843)Scientific and Technology Project of University of Jinan(XKY1923)~~
文摘Rapid technological development and population growth are responsible for a series of imminent environmental problems and an ineluctable energy crisis.The application of semiconductor nanomaterials in photocatalysis or photoelectrocatalysis(PEC)for either the degradation of contaminants in the environment or the generation of hydrogen as clean fuel is an effective approach to alleviate these problems.However,the efficiency of such processes remains suboptimal for real applications.Reasonable construction of a built-in electric field is considered to efficiently enhance carrier separation and reduce carrier recombination to improve catalytic performance.In the past decade,as a new method to enhance the built-in electric field,the piezoelectric effect from piezoelectric materials has been extensively studied.In this review,we provide an overview of the properties of piezoelectric materials and the mechanisms of piezoelectricity and ferroelectricity for a built-in electric field.Then,piezoelectric and ferroelectric polarization regulated built-in electric fields that mediate catalysis are discussed.Furthermore,the applications of piezoelectric semiconductor materials are also highlighted,including degradation of pollutants,bacteria disinfection,water splitting for H2 generation,and organic synthesis.We conclude by discussing the challenges in the field and the exciting opportunities to further improve piezo-catalytic efficiency.
基金financially supported by the Natural Science Foundation of China(No.51761007)the Guangxi Natural Science Foundation,China(Nos.2019GXNSFAA245003,2018GXNSFAA294069,2020GXNSFFA297004,2021GXNSFDA075009)+5 种基金the Guangxi Project of Science and Technology,China(Nos.AD19110078,AA18242023-1)the Scientific Research Foundation of Guilin University of Electronic Technology,China(No.UF18016)the Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials(No.2019GXYSOF08),Chinathe Guangxi Key Laboratory of Information Materials,China(No.191012-Z)the National Key R&D Program of China(No.2016YFB0700901)financial support from the foundation for Guangxi Bagui scholars,China。
文摘The vertical sections of the La−Fe−B system were investigated using electron probe microanalysis and differential thermal analysis.Based on the microstructures and phase compositions of the as-cast and equilibrium alloys,together with their heat flow−temperature curves,phase diagrams for three vertical sections were drawn:La_(x)Fe_(82)B_(y)(x+y=18),La_(x)Fe_(70)B_(y)(x+y=30)and La_(x)Fe_(53)B_(y)(x+y=47),where x and y represent mass fraction of La and B,respectively,%.Additionally,according to the phase diagrams,the compound La2Fe14B was identified as a stable phase at high temperatures.It was found to be stable between 926.2 and 792.6℃;at low temperatures,however,it decomposed into α-La,α-Fe and LaFe_(4)B_(4),according to the reaction La_(2)Fe_(14)B→α-Fe+α-La+LaFe_(4)B_(4).
基金financial supports from the National Natural Science Foundation of China(Nos.51161003,51561031)the Natural Science Foundation of Guangxi,China(No.2018GXNSFAA138150)。
文摘An energy model for the structure transformation of pile-ups of grain boundary dislocations(GBD)at the triple-junction of the grain boundary of ultrafine-grain materials was proposed.The energy of the pile-up of the GBD in the system was calculated by the energy model,the critical geometric and mechanical conditions for the structure transformation of head dislocation of the pile-up were analyzed,and the influence of the number density of the dislocations and the angle between Burgers vectors of two decomposed dislocations on the transformation mode of head dislocation was discussed.The results show when the GBD is accumulated at triple junction,the head dislocation of the GBD is decomposed into two Burgers vectors of these dislocations unless the angle between the two vectors is less than 90°,and the increase of applied external stress can reduce the energy barrier of the dislocation decomposition.The mechanism that the ultrafine-grained metal material has both high strength and plasticity owing to the structure transformation of the pile-up of the GBD at the triple junction of the grain boundary is revealed.
文摘The feasibility of producing superheavy nuclei in proton evaporation channels was systematically studied within the dinuclear system(DNS)model.Due to the Z=114 proton-shell,one can synthesize Fl isotopes in proton evaporation channels.We only considered the case of evaporating one proton first and then n neutrons in this work,other cases were ignored due to the small cross-section.The production cross sections of unknown isotopes ^(290,291)Fl in ^(38)S+^(255)Es reaction are the highest compared with ^(50)Ti+^(243)Np and ^(54)Cr+^(239)Pa reactions,and the maximum cross sections are 1.1 and 15.1 pb,respectively.^(42)S+^(254)Es is a promising candidate to approach the island of stability as the radioactive beam facilities are upgraded in the future,and the production cross sections of ^(291−294)Fl in that reaction are estimated to be 3.2,6.0,4.0,and 0.1 pb,respectively.