传统的谱聚类方法使用k-means达到最后的聚类目的。k-means对初始条件敏感,易陷入局部最优,从而导致传统的谱聚类方法应用到图像分割时效果不太理想。将遗传算法用于优化谱方法的聚类阶段,提出一种以遗传算法优化普聚类的图像分割方法(I...传统的谱聚类方法使用k-means达到最后的聚类目的。k-means对初始条件敏感,易陷入局部最优,从而导致传统的谱聚类方法应用到图像分割时效果不太理想。将遗传算法用于优化谱方法的聚类阶段,提出一种以遗传算法优化普聚类的图像分割方法(Image Segmentation Algorithm of Spectral Clustering Optimization Based on Genetic,ISCOG)。在合成图像与真实图像上的实验表明ISCOG算法极大地提高了谱聚类算法的稳定性和聚类质量,证明了ISCOG算法的优越性。展开更多
文摘传统的谱聚类方法使用k-means达到最后的聚类目的。k-means对初始条件敏感,易陷入局部最优,从而导致传统的谱聚类方法应用到图像分割时效果不太理想。将遗传算法用于优化谱方法的聚类阶段,提出一种以遗传算法优化普聚类的图像分割方法(Image Segmentation Algorithm of Spectral Clustering Optimization Based on Genetic,ISCOG)。在合成图像与真实图像上的实验表明ISCOG算法极大地提高了谱聚类算法的稳定性和聚类质量,证明了ISCOG算法的优越性。