Existing blockwise empirical likelihood(BEL)method blocks the observations or their analogues,which is proven useful under some dependent data settings.In this paper,we introduce a new BEL(NBEL)method by blocking the ...Existing blockwise empirical likelihood(BEL)method blocks the observations or their analogues,which is proven useful under some dependent data settings.In this paper,we introduce a new BEL(NBEL)method by blocking the scoring functions under high dimensional cases.We study the construction of confidence regions for the parameters in spatial autoregressive models with spatial autoregressive disturbances(SARAR models)with high dimension of parameters by using the NBEL method.It is shown that the NBEL ratio statistics are asymptoticallyχ^(2)-type distributed,which are used to obtain the NBEL based confidence regions for the parameters in SARAR models.A simulation study is conducted to compare the performances of the NBEL and the usual EL methods.展开更多
this paper,we propose a class of smoothing-regularization methods for solving the mathematical programming with vanishing constraints.These methods include the smoothing-regularization method proposed by Kanzow et al....this paper,we propose a class of smoothing-regularization methods for solving the mathematical programming with vanishing constraints.These methods include the smoothing-regularization method proposed by Kanzow et al.in[Comput.Optim.Appl.,2013,55(3):733-767]as a special case.Under the weaker conditions than the ones that have been used by Kanzow et al.in 2013,we prove that the Mangasarian-Fromovitz constraint qualification holds at the feasible points of smoothing-regularization problem.We also analyze that the convergence behavior of the proposed smoothing-regularization method under mild conditions,i.e.,any accumulation point of the stationary point sequence for the smoothing-regularization problem is a strong stationary point.Finally,numerical experiments are given to show the efficiency of the proposed methods.展开更多
基金Supported by the National Natural Science Foundation of China(12061017,12361055),and the Research Fund of Guangxi Key Lab of Multi-source Information Mining&Security(22-A-01-01)。
文摘Existing blockwise empirical likelihood(BEL)method blocks the observations or their analogues,which is proven useful under some dependent data settings.In this paper,we introduce a new BEL(NBEL)method by blocking the scoring functions under high dimensional cases.We study the construction of confidence regions for the parameters in spatial autoregressive models with spatial autoregressive disturbances(SARAR models)with high dimension of parameters by using the NBEL method.It is shown that the NBEL ratio statistics are asymptoticallyχ^(2)-type distributed,which are used to obtain the NBEL based confidence regions for the parameters in SARAR models.A simulation study is conducted to compare the performances of the NBEL and the usual EL methods.
基金Supported in part by NSFC(No.11961011)Guangxi Science and Technology Base and Talents Special Project(No.2021AC06001).
文摘this paper,we propose a class of smoothing-regularization methods for solving the mathematical programming with vanishing constraints.These methods include the smoothing-regularization method proposed by Kanzow et al.in[Comput.Optim.Appl.,2013,55(3):733-767]as a special case.Under the weaker conditions than the ones that have been used by Kanzow et al.in 2013,we prove that the Mangasarian-Fromovitz constraint qualification holds at the feasible points of smoothing-regularization problem.We also analyze that the convergence behavior of the proposed smoothing-regularization method under mild conditions,i.e.,any accumulation point of the stationary point sequence for the smoothing-regularization problem is a strong stationary point.Finally,numerical experiments are given to show the efficiency of the proposed methods.