精确量化检出大学生的焦虑情绪并对病理因素进行追溯分析,是临床心理治疗和心理危机干预的重要环节,而基于脑电(Electroencephalograph,EEG)信号的深度学习是当前最具发展潜力的一种诊断方法。本研究对传统卷积神经网络(Convolutional N...精确量化检出大学生的焦虑情绪并对病理因素进行追溯分析,是临床心理治疗和心理危机干预的重要环节,而基于脑电(Electroencephalograph,EEG)信号的深度学习是当前最具发展潜力的一种诊断方法。本研究对传统卷积神经网络(Convolutional Neural Networks,CNN)进行改进,提出并构造一个基于“扩展信息输入空间”的神经网络(Neural Network Based on Extended Information Input Space,NN-EIIS)模型,取代CNN末端的分类器;并引入具有独立性的被试对象焦虑量表得分(Score of Anxiety Scale,SAS),作为焦虑情绪量化标准和训练样本集的输出。以某高校大学生为研究对象进行实验,结果表明所提出的方案不仅实现了对焦虑情感的精确量化识别,还能利用所得模型,在一定程度上对大学生焦虑障碍患者的某些重要的内在病理因素进行追溯分析。展开更多
文摘精确量化检出大学生的焦虑情绪并对病理因素进行追溯分析,是临床心理治疗和心理危机干预的重要环节,而基于脑电(Electroencephalograph,EEG)信号的深度学习是当前最具发展潜力的一种诊断方法。本研究对传统卷积神经网络(Convolutional Neural Networks,CNN)进行改进,提出并构造一个基于“扩展信息输入空间”的神经网络(Neural Network Based on Extended Information Input Space,NN-EIIS)模型,取代CNN末端的分类器;并引入具有独立性的被试对象焦虑量表得分(Score of Anxiety Scale,SAS),作为焦虑情绪量化标准和训练样本集的输出。以某高校大学生为研究对象进行实验,结果表明所提出的方案不仅实现了对焦虑情感的精确量化识别,还能利用所得模型,在一定程度上对大学生焦虑障碍患者的某些重要的内在病理因素进行追溯分析。