期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于特征损失的医学图像超分辨率重建 被引量:10
1
作者 邢晓羊 魏敏 符颖 《计算机工程与应用》 CSCD 北大核心 2018年第20期202-207,218,共7页
高分辨率的磁共振图像可以提供更加清晰的解剖图像,从而促进疾病的早期诊断。但是医疗成像系统的固有缺陷,使得高分辨率医学图像的获取面临许多问题,解决这类问题的方法之一就是使用超分辨率重建技术。针对医学图像超分辨率重建问题,设... 高分辨率的磁共振图像可以提供更加清晰的解剖图像,从而促进疾病的早期诊断。但是医疗成像系统的固有缺陷,使得高分辨率医学图像的获取面临许多问题,解决这类问题的方法之一就是使用超分辨率重建技术。针对医学图像超分辨率重建问题,设计一个前馈全连接卷积神经网络,网络包括五层卷积层和五个残差块,并且使用基于特征的损失函数,解决了使用均方误差损失函数不符合人视觉感的问题。该方法在网络内部实现图像4倍放大重建,避免了使用反卷积层上采样时出现的棋盘伪影。通过实验验证了方法的有效性,在视觉和数值结果上都有所提高。 展开更多
关键词 医学图像 超分辨重建 卷积神经网络 特征损失
下载PDF
基于多正则化约束的图像去运动模糊 被引量:3
2
作者 符颖 吴锡 周激流 《四川大学学报(工程科学版)》 CSCD 北大核心 2017年第3期123-128,共6页
针对图像去运动模糊问题的病态性,已有的方法通常引入对图像的正则化约束从而缩小解空间范围使其良态化,但单一的正则化约束并不能很好地估计点扩散函数和复原原始图像。基于此,本文提出一种基于多正则化约束的图像去运动模糊方法。首先... 针对图像去运动模糊问题的病态性,已有的方法通常引入对图像的正则化约束从而缩小解空间范围使其良态化,但单一的正则化约束并不能很好地估计点扩散函数和复原原始图像。基于此,本文提出一种基于多正则化约束的图像去运动模糊方法。首先,根据图像梯度符合重尾分布的特性,采用归一化的超拉普拉斯先验项作为对图像先验约束的正则项。其次,分析描述图像运动模糊的点扩散函数的内在特性包括稀疏性和连续光滑性;同时,采用点扩散函数自身的L1范数保证其稀疏性并作为其中一项点扩散函数先验约束的正则项,采用Tikhonov正则化约束保证其连续平滑性并作为另一项点扩散函数先验约束的正则项,避免估计的点扩散函数中存在孤立的点。由于所建立的正则项虽然不可微但其是非严格凸函数,故引入辅助变量采用分裂法和交替求解法对所建能量方程进行求解,并利用小波软阈值公式求解辅助变量。本文方法对合成的运动模糊图像和实际相机抖动造成的自然模糊图像均进行实验,实验结果验证了该模型和求解算法的有效性和快速性。实验结果表明,本文方法提高了点扩散函数估计准确度,同时提高了复原图像质量,具有较好的复原效果。 展开更多
关键词 去运动模糊 多正则化约束 分裂法 超拉普拉斯先验
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部