矿物包裹体在形成过程中保存了所在地质环境及不同阶段的物理化学条件信息,并且其形成后没有外来物质的加入和自身物质的带出,因此对流体包裹体进行分析是研究成矿地质环境的重要手段之一。本文以相山铀矿田邹家山、沙洲矿床为例,采用...矿物包裹体在形成过程中保存了所在地质环境及不同阶段的物理化学条件信息,并且其形成后没有外来物质的加入和自身物质的带出,因此对流体包裹体进行分析是研究成矿地质环境的重要手段之一。本文以相山铀矿田邹家山、沙洲矿床为例,采用流体包裹体分析法计算矿床的成矿深度和剥蚀厚度。结果表明,邹家山矿床成矿深度320~1640m,剥蚀厚度320~416m;沙洲矿床成矿深度38~1425m,剥蚀厚度190~240m,大体上与前人研究结论一致。Haas(1976)图解法在沙洲矿床成矿深度研究中比较接近合理,邵洁涟等(1986)的经验公式法在邹家山矿床成矿深度研究中最为合理,Bischoff et al.(1991)T-ρ相图法误差均较大。展开更多
文摘矿物包裹体在形成过程中保存了所在地质环境及不同阶段的物理化学条件信息,并且其形成后没有外来物质的加入和自身物质的带出,因此对流体包裹体进行分析是研究成矿地质环境的重要手段之一。本文以相山铀矿田邹家山、沙洲矿床为例,采用流体包裹体分析法计算矿床的成矿深度和剥蚀厚度。结果表明,邹家山矿床成矿深度320~1640m,剥蚀厚度320~416m;沙洲矿床成矿深度38~1425m,剥蚀厚度190~240m,大体上与前人研究结论一致。Haas(1976)图解法在沙洲矿床成矿深度研究中比较接近合理,邵洁涟等(1986)的经验公式法在邹家山矿床成矿深度研究中最为合理,Bischoff et al.(1991)T-ρ相图法误差均较大。