A facile approach to the preparation of a novel magnetically separable H_5PMo_(10)V_2O_(40)/Fe_3O_4/g-C_3N_4(PMoV/Fe_3O_4/g-C_3N_4) nanocomposite by chemical impregnation is demonstrated.The prepared nanocomposi...A facile approach to the preparation of a novel magnetically separable H_5PMo_(10)V_2O_(40)/Fe_3O_4/g-C_3N_4(PMoV/Fe_3O_4/g-C_3N_4) nanocomposite by chemical impregnation is demonstrated.The prepared nanocomposite was characterized and its acidity was measured by potentiometric titration.PMoV/Fe_3O_4/g-C_3N_4 showed high catalytic activity in the selective oxidative desulfurization of sulfides to their corresponding sulfoxides or sulfones.The catalytic oxidation of a dibenzothiophene(DBT)-containing model oil and that of real oil were also studied under optimized conditions.In addition,the effects of various nitrogen compounds,as well as the use of one- and two-ring aromatic hydrocarbons as co-solvents,on the catalytic removal of sulfur from DBT were investigated.The catalyst was easily separated and could be recovered from the reaction mixture by using an external magnetic field.Additionally,the remaining reactants could be separated from the products by simple decantation if an appropriate solvent was chosen for the extraction.The advantages of this nanocatalyst are its high catalytic activity and reusability;it can be used at least four times without considerable loss of activity.展开更多
The accurate reduced potential energies for two binary gas mixtures including benzene- methanol and methane-tetrafluoromethane at low density have been obtained by direct inversion of the viscosity collision integral ...The accurate reduced potential energies for two binary gas mixtures including benzene- methanol and methane-tetrafluoromethane at low density have been obtained by direct inversion of the viscosity collision integral equations. The kinetic theory along with the extended principle of corresponding-states has been used to calculate the viscosity and dif- fusion coefficients over a wide range of temperature and composition. Good agreements between calculated and experimental data are obtained.展开更多
基金the Razi University Research Council for support of this work
文摘A facile approach to the preparation of a novel magnetically separable H_5PMo_(10)V_2O_(40)/Fe_3O_4/g-C_3N_4(PMoV/Fe_3O_4/g-C_3N_4) nanocomposite by chemical impregnation is demonstrated.The prepared nanocomposite was characterized and its acidity was measured by potentiometric titration.PMoV/Fe_3O_4/g-C_3N_4 showed high catalytic activity in the selective oxidative desulfurization of sulfides to their corresponding sulfoxides or sulfones.The catalytic oxidation of a dibenzothiophene(DBT)-containing model oil and that of real oil were also studied under optimized conditions.In addition,the effects of various nitrogen compounds,as well as the use of one- and two-ring aromatic hydrocarbons as co-solvents,on the catalytic removal of sulfur from DBT were investigated.The catalyst was easily separated and could be recovered from the reaction mixture by using an external magnetic field.Additionally,the remaining reactants could be separated from the products by simple decantation if an appropriate solvent was chosen for the extraction.The advantages of this nanocatalyst are its high catalytic activity and reusability;it can be used at least four times without considerable loss of activity.
文摘The accurate reduced potential energies for two binary gas mixtures including benzene- methanol and methane-tetrafluoromethane at low density have been obtained by direct inversion of the viscosity collision integral equations. The kinetic theory along with the extended principle of corresponding-states has been used to calculate the viscosity and dif- fusion coefficients over a wide range of temperature and composition. Good agreements between calculated and experimental data are obtained.