期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于弹性碰撞优化算法的传感云资源调度 被引量:3
1
作者 刘洲洲 李士宁 +3 位作者 李彬 王皓 张倩昀 郑然 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2018年第8期1431-1443,共13页
针对当前智能优化算法普遍存在收敛精度不高、容易"早熟"的缺陷,提出全新的智能优化算法—弹性碰撞优化(ECO)算法.算法基于弹性碰撞物理学现象,通过模拟碰撞过程中物理属性相互影响的变化过程,抽象出"与种群最优碰撞&qu... 针对当前智能优化算法普遍存在收敛精度不高、容易"早熟"的缺陷,提出全新的智能优化算法—弹性碰撞优化(ECO)算法.算法基于弹性碰撞物理学现象,通过模拟碰撞过程中物理属性相互影响的变化过程,抽象出"与种群最优碰撞"、"与自身历史最优碰撞"和"随机碰撞"3种粒子更新机制.为了有效提升复杂高维优化问题的寻优能力,设计自适应核模糊C-均值聚类(AKFCM)算法,利用AKFCM对ECO种群进行聚类分析,通过迭代比对策略实现种群自动最佳聚类划分,确保粒子学习对象的合理性与多样性.种群样本多样性定量分析表明ECO在运算后期具有较好的种群多样性.将ECO应用于传感云资源调度问题,为了满足传感云系统管理多样性需求,构建多目标优化传感云资源调度模型,设计符合调度问题的ECO粒子编码方式,实现传感云资源高效率调度优化.多维复杂测试函数以及传感云资源调度实例仿真结果表明,ECO具有较高的收敛精度和成功率,有效降低了传感云资源调度的能耗和任务长度. 展开更多
关键词 弹性碰撞优化算法 无线传感器网络 传感云 种群多样性 能耗
下载PDF
联合弹性碰撞与梯度追踪的WSNs压缩感知重构 被引量:1
2
作者 刘洲洲 李士宁 +1 位作者 王皓 张倩昀 《自动化学报》 EI CSCD 北大核心 2020年第1期178-192,共15页
为提高压缩感知(Compressed sensing,CS)大规模稀疏信号重构精度,提出了一种联合弹性碰撞优化与改进梯度追踪的WSNs(Wireless sensor networks)压缩感知重构算法.首先,创新地提出一种全新的智能优化算法|弹性碰撞优化算法(Elastic colli... 为提高压缩感知(Compressed sensing,CS)大规模稀疏信号重构精度,提出了一种联合弹性碰撞优化与改进梯度追踪的WSNs(Wireless sensor networks)压缩感知重构算法.首先,创新地提出一种全新的智能优化算法|弹性碰撞优化算法(Elastic collision optimization algorithm,ECO),ECO模拟物理碰撞信息交互过程,利用自身历史最优解和种群最优解指导进化方向,并且个体以N(0,1)概率形式散落于种群最优解周围,在有效提升收敛速度的同时扩展了个体搜索空间,理论定性分析表明ECO依概率1收敛于全局最优解,而种群多样性指标分析证明了算法全局寻优能力.其次,针对贪婪重构算法高维稀疏信号重构效率低、稀疏度事先设定的缺陷,在设计重构有效性指数的基础上将ECO应用于压缩感知重构算法中,并引入拟牛顿梯度追踪策略,从而实现对大规模稀疏度未知数据的准确重构.最后,利用多维测试函数和WSNs数据采集环境进行仿真,仿真结果表明,ECO在收敛精度和成功率上具有一定优势,而且相比于其他重构算法,高维稀疏信号重构结果明显改善. 展开更多
关键词 无线传感器网络 弹性碰撞优化算法 收敛性 压缩感知 稀疏重构算法
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部