以有机气凝胶RC-500为原料,采用低质量比KOH(KOH∶有机气凝胶=3∶1)活化的方法,900℃炭化活化,制备出一种具有层次孔结构的活性炭气凝胶ACA-500-3。将其作为硫载体,与单质硫在155℃熔融复合后制备出含硫量达66.2%的锂硫电池正极复合材料...以有机气凝胶RC-500为原料,采用低质量比KOH(KOH∶有机气凝胶=3∶1)活化的方法,900℃炭化活化,制备出一种具有层次孔结构的活性炭气凝胶ACA-500-3。将其作为硫载体,与单质硫在155℃熔融复合后制备出含硫量达66.2%的锂硫电池正极复合材料(ACA-500-3-S)。通过N2吸附、SEM、TEM、XRD和XPS等测试手段考察ACA-500-3和ACA-500-3-S的结构和形貌,并利用循环伏安、恒流充放电和交流阻抗等方法研究ACA-500-3-S的电化学性能。ACA-500-3-S在0.2 C(1 C=1 675 m A·g-1)电流密度下,初始放电比容量高达1 287 m Ah·g-1,200圈后比容量保持在643 m Ah·g-1,并表现出良好的倍率性能,明显优于单质硫电极。展开更多
文摘以有机气凝胶RC-500为原料,采用低质量比KOH(KOH∶有机气凝胶=3∶1)活化的方法,900℃炭化活化,制备出一种具有层次孔结构的活性炭气凝胶ACA-500-3。将其作为硫载体,与单质硫在155℃熔融复合后制备出含硫量达66.2%的锂硫电池正极复合材料(ACA-500-3-S)。通过N2吸附、SEM、TEM、XRD和XPS等测试手段考察ACA-500-3和ACA-500-3-S的结构和形貌,并利用循环伏安、恒流充放电和交流阻抗等方法研究ACA-500-3-S的电化学性能。ACA-500-3-S在0.2 C(1 C=1 675 m A·g-1)电流密度下,初始放电比容量高达1 287 m Ah·g-1,200圈后比容量保持在643 m Ah·g-1,并表现出良好的倍率性能,明显优于单质硫电极。