为解决滚动轴承在寿命预测时精度不高,且性能退化趋势及波动范围难以预测等问题,提出了基于LSTM‑ES‑RVM的滚动轴承剩余寿命预测方法。在无先验知识或人工经验的干扰下,利用长短期记忆(Long Short‑Term Memory,LSTM)网络直接对频率数据...为解决滚动轴承在寿命预测时精度不高,且性能退化趋势及波动范围难以预测等问题,提出了基于LSTM‑ES‑RVM的滚动轴承剩余寿命预测方法。在无先验知识或人工经验的干扰下,利用长短期记忆(Long Short‑Term Memory,LSTM)网络直接对频率数据进行特征提取,构建退化过程的初步健康指标(Health Indicator,HI);为了消除HI曲线的局部剧烈振荡,提出了带斜率的极端拐点(Extreme Inflection Point with a Slope,ES)模型改善其整体单调性;使用相关向量机(Relevance Vector Machine,RVM)模型对HI曲线进行趋势预测,实现了滚动轴承的剩余寿命(Remaining Useful Life,RUL)预测。实验结果表明,所提方法相较于对比方法具有较好的预测精度。展开更多
针对原始振动信号不可避免的包含多余噪声问题。提出一种基于稀疏滤波(sparse filtering,SF)和长短期记忆网络(long and short term memory network,LSTM)相结合的旋转机械故障诊断模型,该模型利用快速傅立叶变换将原始时域信号转换成...针对原始振动信号不可避免的包含多余噪声问题。提出一种基于稀疏滤波(sparse filtering,SF)和长短期记忆网络(long and short term memory network,LSTM)相结合的旋转机械故障诊断模型,该模型利用快速傅立叶变换将原始时域信号转换成频域信号,再通过SF提取低维故障特征,并将其输入到LSTM堆叠分类器中识别旋转机械故障状态。用轴承和齿轮振动信号为例开展试验研究,并与Softmax、深度神经网络(deep neural networks,DNN)、支持向量机(support vector machine,SVM)、降噪自编码器(denoising auto-encoder,DAE)等方法进行试验对比,结果表明所提方法不仅在噪声环境下具有更高的准确率和鲁棒性,而且针对数据不平衡集的诊断也能达到98%以上的准确率。展开更多
文摘为解决滚动轴承在寿命预测时精度不高,且性能退化趋势及波动范围难以预测等问题,提出了基于LSTM‑ES‑RVM的滚动轴承剩余寿命预测方法。在无先验知识或人工经验的干扰下,利用长短期记忆(Long Short‑Term Memory,LSTM)网络直接对频率数据进行特征提取,构建退化过程的初步健康指标(Health Indicator,HI);为了消除HI曲线的局部剧烈振荡,提出了带斜率的极端拐点(Extreme Inflection Point with a Slope,ES)模型改善其整体单调性;使用相关向量机(Relevance Vector Machine,RVM)模型对HI曲线进行趋势预测,实现了滚动轴承的剩余寿命(Remaining Useful Life,RUL)预测。实验结果表明,所提方法相较于对比方法具有较好的预测精度。
文摘针对原始振动信号不可避免的包含多余噪声问题。提出一种基于稀疏滤波(sparse filtering,SF)和长短期记忆网络(long and short term memory network,LSTM)相结合的旋转机械故障诊断模型,该模型利用快速傅立叶变换将原始时域信号转换成频域信号,再通过SF提取低维故障特征,并将其输入到LSTM堆叠分类器中识别旋转机械故障状态。用轴承和齿轮振动信号为例开展试验研究,并与Softmax、深度神经网络(deep neural networks,DNN)、支持向量机(support vector machine,SVM)、降噪自编码器(denoising auto-encoder,DAE)等方法进行试验对比,结果表明所提方法不仅在噪声环境下具有更高的准确率和鲁棒性,而且针对数据不平衡集的诊断也能达到98%以上的准确率。