期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Size-control growth of thermally stable Au nanoparticles encapsulated within ordered mesoporous carbon framework 被引量:3
1
作者 王帅 王杰 +3 位作者 朱小娟 王建强 Osamu Terasaki 万颖 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2016年第1期61-72,共12页
Simultaneously controlling the size of Au nanoparticles and immobilizing their location to specific active sites while hindering migration and sintering at elevated temperatures is a current challenge within materials... Simultaneously controlling the size of Au nanoparticles and immobilizing their location to specific active sites while hindering migration and sintering at elevated temperatures is a current challenge within materials chemistry.Typical methods require the use of protecting agents to control the properties of Au nanoparticles and therefore it is difficult to decouple the influence of the protecting agent and the support material.By functionalizing the internal surface area of mesoporous carbon supports with thiol groups and implementing a simple acid extraction step,we are able to design the resulting materials with precise control over the Au nanoparticle size without the need for the presence of any protecting group,whilst simultaneously confining the nanoparticles to within the internal porous network.Monodispersed Au nanoparticles in the absence of protecting agents were encapsulated into ordered mesoporous carbon at various loading levels via a coordination-assisted self-assembly approach.The X-ray diffractograms and transmission electron microscopy micrographs show that the particles have controlled and well-defined diameters between 3 and 18 nm at concentrations between 1.1 and 9.0 wt%.The Au nanoparticles are intercalated into the pore matrix to different degrees depending on the synthesis conditions and are stable after high temperature treatment at 600 °C.N2 adsorption-desorption isotherms show that the Au functionalized mesoporous carbon catalysts possess high surface areas(1269–1743 m^2/g),large pore volumes(0.78–1.38 cm^3/g)and interpenetrated,uniform bimodal mesopores with the primary larger mesopore lying in the range of 3.4–5.7 nm and the smaller secondary mesopore having a diameter close to 2 nm.X-ray absorption near extended spectroscopy analysis reveals changes to the electronic properties of the Au nanoparticles as a function of reduced particle size.The predominant factors that significantly determine the end Au nanoparticle size is both the thiol group concentration and subjecting the as-made materials to an additional concentrated sulfuric acid extraction step. 展开更多
关键词 Gold nanoparticles Size Carbon MESOPOROUS
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部