As a rapid uniform and efficient heating method, microwave irradiation has been widely used in chemical reaction and preparing nanomaterials. Here Pt/carbon nanotube(CNT) catalysts with w(Pt)=18.1% and 9.4 % were rapi...As a rapid uniform and efficient heating method, microwave irradiation has been widely used in chemical reaction and preparing nanomaterials. Here Pt/carbon nanotube(CNT) catalysts with w(Pt)=18.1% and 9.4 % were rapidly synthesized by microwave irradiation heating polyol process and employing the ethylene glycol solution of H 2PtCl 6 as the precursors in the presence of CNT support. TEM imaging showed that microwave-prepared Pt nanoparticles were very uniform in size, with an average size of 3.1 nm, and uniformly dispersed on the CNT surface. Electrochemical experiments demonstrated that microwave-synthesized Pt/CNT catalysts exhibited a higher catalytic activity for electrooxidation of liquid methanol than E-TEK Pt/C. The significant improvement in catalyst performance derives from that microwave-synthesized Pt nanoparticles have a uniform small particle size and uniforml dispersion on the CNT surface.展开更多
文摘As a rapid uniform and efficient heating method, microwave irradiation has been widely used in chemical reaction and preparing nanomaterials. Here Pt/carbon nanotube(CNT) catalysts with w(Pt)=18.1% and 9.4 % were rapidly synthesized by microwave irradiation heating polyol process and employing the ethylene glycol solution of H 2PtCl 6 as the precursors in the presence of CNT support. TEM imaging showed that microwave-prepared Pt nanoparticles were very uniform in size, with an average size of 3.1 nm, and uniformly dispersed on the CNT surface. Electrochemical experiments demonstrated that microwave-synthesized Pt/CNT catalysts exhibited a higher catalytic activity for electrooxidation of liquid methanol than E-TEK Pt/C. The significant improvement in catalyst performance derives from that microwave-synthesized Pt nanoparticles have a uniform small particle size and uniforml dispersion on the CNT surface.