期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
节点应力连续的四边形单元 被引量:6
1
作者 唐旭海 郑超 +1 位作者 吴圣川 张建海 《应用数学和力学》 CSCD 北大核心 2009年第12期1427-1439,共13页
节点应力连续的四边形单元Q4-CNS是一种基于单位分解理论的混合的有限元无网格法.Q4-CNS可以视作FE-LSPIM QUAD4的发展.Q4-CNS形函数的导数在节点处是连续的,因此可以自然的得到节点应力,而不需要使用节点应力磨平算法.数值实验表明,与... 节点应力连续的四边形单元Q4-CNS是一种基于单位分解理论的混合的有限元无网格法.Q4-CNS可以视作FE-LSPIM QUAD4的发展.Q4-CNS形函数的导数在节点处是连续的,因此可以自然的得到节点应力,而不需要使用节点应力磨平算法.数值实验表明,与传统四边形单元(QUAD4)相比,Q4-CNS具有更好的计算精度和更高的收敛速度.在扭曲网格下,Q4-CNS也能取得满意的数值精度.然而,QUAD4的数值精度则会随着网格的扭曲明显的变差.基于Kirchhoff-Love假设的非协调板单元计算中,不仅要求形函数在单元的交界面上要保持C0连续性,而且要求形函数在节点处具有C1连续性,所以在任意的四边形单元上构造满足插值条件的非协调板单元形函数较为困难.Q4-CNS形函数的导数在节点处是连续的,所以Q4-CNS在求解基于Kirchhoff-Love假设的板单元问题中具有潜在的应用价值. 展开更多
关键词 Q4—CNS 单位分解法 连续的节点应力 数值精度 网格扭曲
下载PDF
基于虚节点的多边形有限元法 被引量:5
2
作者 唐旭海 吴圣川 +1 位作者 郑超 张建海 《应用数学和力学》 EI CSCD 北大核心 2009年第10期1153-1164,共12页
虚节点法是一种新的基于单位分解理论的多边形有限元法.将虚节点法应用于求解弹性力学问题,并且通过大量数值实验测试虚节点法的计算效果.因为虚节点法具有多项式形式,所以有效地降低了传统多边形有限元法的积分误差.数值实验证明,在分... 虚节点法是一种新的基于单位分解理论的多边形有限元法.将虚节点法应用于求解弹性力学问题,并且通过大量数值实验测试虚节点法的计算效果.因为虚节点法具有多项式形式,所以有效地降低了传统多边形有限元法的积分误差.数值实验证明,在分片实验中虚节点法能得到比包括Wachspress法和mean value法在内的传统多边形有限元法更精确的数值结果.在收敛性试验中,虚节点法在相同节点数的条件下能取得比三角形一次单元更精确的数值结果.因为虚节点法能适应任意边数的多边形单元,所以对网格具有很强的适应性,在几何条件复杂、网格生成困难的问题中具有良好的应用价值.为了展示虚节点法潜在的应用价值,用虚节点法求解断裂力学应力强度因子和模拟裂纹扩展.同时,基于多边形单元的网格重划分技术和网格加密技术也应用于求解断裂力学应力强度因子和模拟裂纹扩展. 展开更多
关键词 虚节点法 多边形单元 单位分解法 裂纹扩展
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部