期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于逻辑回归算法的复杂背景棉田冠层图像自适应阈值分割 被引量:15
1
作者 刘立波 程晓龙 +1 位作者 戴建国 赖军臣 《农业工程学报》 EI CAS CSCD 北大核心 2017年第12期201-208,共8页
棉田冠层覆盖度是监测棉田棉花长势的重要指标,针对棉田复杂环境中冠层图像难以准确分割的问题,该文提出了一种基于逻辑回归算法的复杂背景棉田冠层图像自适应阈值分割方法。首先将棉田冠层图像像素分成叶片冠层和地表背景2类,在HSV颜... 棉田冠层覆盖度是监测棉田棉花长势的重要指标,针对棉田复杂环境中冠层图像难以准确分割的问题,该文提出了一种基于逻辑回归算法的复杂背景棉田冠层图像自适应阈值分割方法。首先将棉田冠层图像像素分成叶片冠层和地表背景2类,在HSV颜色空间中分别提取两类像素的H通道值,在RGB颜色空间中分别提取绿色占比值(G/(G+R+B))作为颜色特征;再利用逻辑回归算法确定出各颜色特征的分割阈值,通过H通道分割阈值实现图像的初次分割;再对初次分割结果中的低亮像素使用逻辑回归算法计算出的超绿特征阈值进行低亮像素分割,同时采用绿色占比分割阈值对图像高亮像素及低亮像素分割结果整体实现二次分割,最后采用形态学滤波方法对分割结果进行优化。为评价该分割方法,利用从新疆棉花产区采集到的320幅棉田冠层图像进行试验。结果表明,该方法可在棉田复杂自然背景下,有效分割出棉田冠层区域,平均相对目标面积误差率仅为5.46%,总体平均匹配率达到93.07%;优于超绿特征OTSU分割方法(平均相对目标面积误差率11.78%,总体平均匹配率76.43%)、四分量分割方法(平均相对目标面积误差率24.11%,总体平均匹配率71.67%)、显著性分割方法(平均相对目标面积误差率36.92%,总体平均匹配率66.92%)。该方法的平均处理时间为4.63 s,相对于超绿特征OTSU法(3.84 s)和四分量分割法(2.56 s),耗时多一些,但与显著性分割法(6.25 s)对比,花费时间要少。研究结果可为棉田自然复杂环境下机器视觉技术监测棉花覆盖度提供一种有效途径。 展开更多
关键词 算法 棉花 图像分割 逻辑回归 自适应阈值
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部