期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于词向量的评价搭配抽取算法研究
1
作者
杨令铎
史海波
周晓锋
《小型微型计算机系统》
CSCD
北大核心
2016年第10期2269-2272,共4页
传统中文评价搭配抽取采用的最大熵和条件随机域等算法依赖于人工选取特征,且对前期语义标注精度要求较高.本文提出一种使用词向量代替传统语义特征进行搭配抽取的方法.其中词向量通过深度学习模型在大规模语料上进行无监督学习得到.实...
传统中文评价搭配抽取采用的最大熵和条件随机域等算法依赖于人工选取特征,且对前期语义标注精度要求较高.本文提出一种使用词向量代替传统语义特征进行搭配抽取的方法.其中词向量通过深度学习模型在大规模语料上进行无监督学习得到.实验中将词向量及语义特征分别作为三种机器学习模型的输入,结果表明使用词向量在神经网络模型中取得了较好的效果,其精度、召回率都比使用语义特征最好情况高出接近3%,同时,我们发现随着无监督学习训练语料的增大,得到的词向量也越来越实用.
展开更多
关键词
搭配抽取
词向量
神经网络
条件随机域
最大熵
下载PDF
职称材料
题名
基于词向量的评价搭配抽取算法研究
1
作者
杨令铎
史海波
周晓锋
机构
中国科学院物联网研究发展
中心
中国科学院沈阳自动化研究所
无锡中科泛在技术研发中心有限公司
出处
《小型微型计算机系统》
CSCD
北大核心
2016年第10期2269-2272,共4页
基金
国家"八六三"高技术研究发展计划项目(2013AA040705-1)资助
文摘
传统中文评价搭配抽取采用的最大熵和条件随机域等算法依赖于人工选取特征,且对前期语义标注精度要求较高.本文提出一种使用词向量代替传统语义特征进行搭配抽取的方法.其中词向量通过深度学习模型在大规模语料上进行无监督学习得到.实验中将词向量及语义特征分别作为三种机器学习模型的输入,结果表明使用词向量在神经网络模型中取得了较好的效果,其精度、召回率都比使用语义特征最好情况高出接近3%,同时,我们发现随着无监督学习训练语料的增大,得到的词向量也越来越实用.
关键词
搭配抽取
词向量
神经网络
条件随机域
最大熵
Keywords
evaluation collocation extraction
word vector
neural network
Canditional Random Field ( CRF )
maximum entropy
分类号
TP18 [自动化与计算机技术—控制理论与控制工程]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于词向量的评价搭配抽取算法研究
杨令铎
史海波
周晓锋
《小型微型计算机系统》
CSCD
北大核心
2016
0
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部