载波芯片(chip on carrier,COC)是光发射次模块(transmitter optical subassembly,TOSA)的重要组成部分,被广泛应用于光通信领域,实现光电转换。针对载波芯片崩口、定位柱破损以及波导污渍三种不同类别缺陷的实时检测问题,提出了一种基...载波芯片(chip on carrier,COC)是光发射次模块(transmitter optical subassembly,TOSA)的重要组成部分,被广泛应用于光通信领域,实现光电转换。针对载波芯片崩口、定位柱破损以及波导污渍三种不同类别缺陷的实时检测问题,提出了一种基于轻量级卷积神经网络的载波芯片缺陷检测算法YOLO-Efficientnet。为了减少网络参数,缩短检测时间,采用轻量级卷积神经网络Efficientnet作为主干网络对图像进行特征提取,在移动翻转瓶颈卷积(MBConv)的基础上,引入了压缩与激发网络(SENet)的注意力思想,在通道维度上引入注意力机制;为了解决下采样的过程中导致信息丢失的问题,引入空间金字塔池化(SPP)结构来增大图像的感受野,分离出更加显著的上下文特征。针对COC缺陷多尺度以及波导区域污渍小目标难以检测的问题,引入了PANet结构进行多尺度特征融合。实验结果表明,提出的算法对COC缺陷检测的准确率达到了98.5%,检测时间达到每张图片0.42 s,满足实时检测的需求。展开更多
陶瓷基板是半导体元器件的重要基础材料,其瑕疵检测对保证产品质量具有重要的意义。提出了一种基于改进YOLOV4网络的陶瓷基板瑕疵自动检测方法。针对陶瓷基板瑕疵尺寸较小、颜色形状多变以及不同类瑕疵间尺寸变化较大导致的瑕疵检测困...陶瓷基板是半导体元器件的重要基础材料,其瑕疵检测对保证产品质量具有重要的意义。提出了一种基于改进YOLOV4网络的陶瓷基板瑕疵自动检测方法。针对陶瓷基板瑕疵尺寸较小、颜色形状多变以及不同类瑕疵间尺寸变化较大导致的瑕疵检测困难问题,改进的YOLOV4网络通过借鉴Complete Intersection over Union(CIoU)思想优化初始先验框设计,引入基于梯度协调机制的置信度损失函数和十字交叉注意力网络来改善缺陷检测能力。实验结果表明,基于改进YOLOV4的陶瓷基板瑕疵检测方法对于陶瓷基板污染、异物、多金、缺瓷以及损伤这5类瑕疵检测的平均准确性达到98.3%,可满足工业现场对陶瓷基板瑕疵的检测精度要求。展开更多
文摘陶瓷基板是半导体元器件的重要基础材料,其瑕疵检测对保证产品质量具有重要的意义。提出了一种基于改进YOLOV4网络的陶瓷基板瑕疵自动检测方法。针对陶瓷基板瑕疵尺寸较小、颜色形状多变以及不同类瑕疵间尺寸变化较大导致的瑕疵检测困难问题,改进的YOLOV4网络通过借鉴Complete Intersection over Union(CIoU)思想优化初始先验框设计,引入基于梯度协调机制的置信度损失函数和十字交叉注意力网络来改善缺陷检测能力。实验结果表明,基于改进YOLOV4的陶瓷基板瑕疵检测方法对于陶瓷基板污染、异物、多金、缺瓷以及损伤这5类瑕疵检测的平均准确性达到98.3%,可满足工业现场对陶瓷基板瑕疵的检测精度要求。