期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于注意力机制融合特征的车辆目标检测方法
1
作者 过鑫炎 朱硕 +2 位作者 孙佳豪 梁吉丰 汪宗洋 《电子测量技术》 北大核心 2024年第9期52-60,共9页
为了解决道路监控下的车辆目标检测精度低的问题,本文提出一种改进YOLOv7的车辆检测方法。首先引入跨空间学习的高效多尺度注意机制EMA来提高对特征信息的关注;其次将颈部网络中的SPPCSPC模块替换为SPPFCSPC模块,裁剪CBS层,引入EMA注意... 为了解决道路监控下的车辆目标检测精度低的问题,本文提出一种改进YOLOv7的车辆检测方法。首先引入跨空间学习的高效多尺度注意机制EMA来提高对特征信息的关注;其次将颈部网络中的SPPCSPC模块替换为SPPFCSPC模块,裁剪CBS层,引入EMA注意力机制,以强化对小目标区域的关注,获取更准确的车辆特征;同时,将EMA注意力引入MP模块中,使网络融合更多重要的特征信息;最后,采用MPDIoU损失函数,加快模型收敛速度并提高检测精度。实验结果表明,改进后的YOLOv7检测精度为86.69%,相比原始YOLOv7网络提高了2.83%,可以有效地提升车辆目标检测精度,为道路视频监控等提供保证。 展开更多
关键词 车辆检测 YOLOv7 注意力机制 MPDIoU loss
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部