期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
2
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
一种求解N-S方程的自适应直角网格方法
被引量:
4
1
作者
罗昔联
顾兆林
+1 位作者
雷康斌
加濑究
《西安交通大学学报》
EI
CAS
CSCD
北大核心
2009年第11期11-17,共7页
提出了一种用直角网格表达背景、切削网格表达边界的非结构化自适应直角网格方法.该方法采用四叉树保存网格数据,将切削简化成6种类型,用速度的旋度和散度作为自适应加密标准,从而可实现任意二维区域网格的自动生成和自适应加密.通过将...
提出了一种用直角网格表达背景、切削网格表达边界的非结构化自适应直角网格方法.该方法采用四叉树保存网格数据,将切削简化成6种类型,用速度的旋度和散度作为自适应加密标准,从而可实现任意二维区域网格的自动生成和自适应加密.通过将极小网格边界化处理,利用SIM-PLE算法处理速度和压力的耦合,实现了该网格上N-S方程的离散和求解.算例表明,该方法网格生成简单,可以用于任意形状上的流动和传热模拟,相比非自适应方法,用一半的网格数目即可达到相同的计算精度.
展开更多
关键词
四叉树
直角网格
切削网格
网格自适应
下载PDF
职称材料
基于四叉树切削网格的N-S方程求解方法
2
作者
罗昔联
顾兆林
+2 位作者
雷康斌
王盛
加濑究
《中国科学(G辑)》
CSCD
北大核心
2009年第6期887-894,共8页
以四叉树非结构化网格为基础,提出了背景区域采用正方形四叉树网格、边界区域采用切削网格的一种可以表达复杂几何形状的网格生成方法,该网格具有生成过程简单,正交性好等优点.在这种网格的基础上,采用非结构网格有限体积法进行离散得...
以四叉树非结构化网格为基础,提出了背景区域采用正方形四叉树网格、边界区域采用切削网格的一种可以表达复杂几何形状的网格生成方法,该网格具有生成过程简单,正交性好等优点.在这种网格的基础上,采用非结构网格有限体积法进行离散得到了多种形状切削网格并存时Navier-Stokes(N-S)方程的求解算法,并以顶盖驱动斜方腔流和方腔内热圆柱自然对流为例,应用上述算法实现了网格生成和流动数值模拟,与基准解进行了比较,一致性较好.计算结果表明这种切削网格方法及其N-S方程求解方法具有可靠性和应用前景.
展开更多
关键词
四叉树
切削网格
N-S方程
有限体积法
原文传递
题名
一种求解N-S方程的自适应直角网格方法
被引量:
4
1
作者
罗昔联
顾兆林
雷康斌
加濑究
机构
西安交通大
学
能源与动力工程
学
院
西安交通大
学
人居环境与建筑工程
学
院
日本理化学研究所vcad模拟研究室
出处
《西安交通大学学报》
EI
CAS
CSCD
北大核心
2009年第11期11-17,共7页
基金
国家自然科学基金资助项目(10872159
40675011)
+1 种基金
日本理化学研究所与西安交通大学IPA联合培养博士生计划资助项目
日本JSPS科学研究基金(基础研究C)资助项目(20560175)
文摘
提出了一种用直角网格表达背景、切削网格表达边界的非结构化自适应直角网格方法.该方法采用四叉树保存网格数据,将切削简化成6种类型,用速度的旋度和散度作为自适应加密标准,从而可实现任意二维区域网格的自动生成和自适应加密.通过将极小网格边界化处理,利用SIM-PLE算法处理速度和压力的耦合,实现了该网格上N-S方程的离散和求解.算例表明,该方法网格生成简单,可以用于任意形状上的流动和传热模拟,相比非自适应方法,用一半的网格数目即可达到相同的计算精度.
关键词
四叉树
直角网格
切削网格
网格自适应
Keywords
quadtree
Cartesian grid
cut cell
grid adaptation
分类号
TK124 [动力工程及工程热物理—工程热物理]
下载PDF
职称材料
题名
基于四叉树切削网格的N-S方程求解方法
2
作者
罗昔联
顾兆林
雷康斌
王盛
加濑究
机构
西安交通大
学
能源与动力工程
学
院
日本理化学研究所vcad模拟研究室
出处
《中国科学(G辑)》
CSCD
北大核心
2009年第6期887-894,共8页
基金
日本理化学研究所IPA计划
日本JSPS科学研究基金(基础研究C)(编号:20560175)
国家自然科学基金(批准号:10872159,40675011)资助项目
文摘
以四叉树非结构化网格为基础,提出了背景区域采用正方形四叉树网格、边界区域采用切削网格的一种可以表达复杂几何形状的网格生成方法,该网格具有生成过程简单,正交性好等优点.在这种网格的基础上,采用非结构网格有限体积法进行离散得到了多种形状切削网格并存时Navier-Stokes(N-S)方程的求解算法,并以顶盖驱动斜方腔流和方腔内热圆柱自然对流为例,应用上述算法实现了网格生成和流动数值模拟,与基准解进行了比较,一致性较好.计算结果表明这种切削网格方法及其N-S方程求解方法具有可靠性和应用前景.
关键词
四叉树
切削网格
N-S方程
有限体积法
分类号
O241 [理学—计算数学]
原文传递
题名
作者
出处
发文年
被引量
操作
1
一种求解N-S方程的自适应直角网格方法
罗昔联
顾兆林
雷康斌
加濑究
《西安交通大学学报》
EI
CAS
CSCD
北大核心
2009
4
下载PDF
职称材料
2
基于四叉树切削网格的N-S方程求解方法
罗昔联
顾兆林
雷康斌
王盛
加濑究
《中国科学(G辑)》
CSCD
北大核心
2009
0
原文传递
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部