基于Hankel矩阵的奇异值分解(Singular value decomposition,SVD)方法在信号处理、故障诊断领域得到了广泛应用。其降噪性能受选取的重构分量、Hankel矩阵结构、分析的数据点数的影响,对此进行了系统的研究,提出了基于相关奇异值比的SVD...基于Hankel矩阵的奇异值分解(Singular value decomposition,SVD)方法在信号处理、故障诊断领域得到了广泛应用。其降噪性能受选取的重构分量、Hankel矩阵结构、分析的数据点数的影响,对此进行了系统的研究,提出了基于相关奇异值比的SVD(Correlated singular value ratio SVD,C-SVR SVD)方法,并成功应用于轴承故障诊断。首先,针对SVD的重构分量的确定问题,提出了奇异值比(Singular value ratio,SVR)和互相关系数相结合的方法;其次,对Hankel矩阵的结构进行研究,提出了基于SVR和峭度指标的结构优化方法。然后,对分析的数据点数进行了分析讨论,给定了约束。最后,将C-SVR SVD方法应用于轴承故障仿真信号和实际轴承故障案例分析,验证了C-SVR SVD方法的有效性和优越性。展开更多
文摘基于Hankel矩阵的奇异值分解(Singular value decomposition,SVD)方法在信号处理、故障诊断领域得到了广泛应用。其降噪性能受选取的重构分量、Hankel矩阵结构、分析的数据点数的影响,对此进行了系统的研究,提出了基于相关奇异值比的SVD(Correlated singular value ratio SVD,C-SVR SVD)方法,并成功应用于轴承故障诊断。首先,针对SVD的重构分量的确定问题,提出了奇异值比(Singular value ratio,SVR)和互相关系数相结合的方法;其次,对Hankel矩阵的结构进行研究,提出了基于SVR和峭度指标的结构优化方法。然后,对分析的数据点数进行了分析讨论,给定了约束。最后,将C-SVR SVD方法应用于轴承故障仿真信号和实际轴承故障案例分析,验证了C-SVR SVD方法的有效性和优越性。