期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于模糊C均值聚类改进的最大似然分类法 被引量:4
1
作者 周国琼 段海军 陈剑鸣 《科学技术与工程》 北大核心 2012年第19期4697-4700,共4页
基于参数密度分布模型的最大似然分类法(MLC)是遥感影像经典分类方法之一,它具有清晰的参数解释能力、易于与先验知识融合和算法简单而易于实施等优点,但是由于遥感数据具有高度的模糊性和随机性,使得贝叶斯(Bayes)判别函数中的均值向... 基于参数密度分布模型的最大似然分类法(MLC)是遥感影像经典分类方法之一,它具有清晰的参数解释能力、易于与先验知识融合和算法简单而易于实施等优点,但是由于遥感数据具有高度的模糊性和随机性,使得贝叶斯(Bayes)判别函数中的均值向量和协方差矩阵很难准确确定。因此首先利用模糊C均值聚类得到模糊划分矩阵,然后基于模糊划分矩阵计算出每一个聚类类别模糊均值和模糊协方差矩阵,并利用模糊均值和模糊协方差矩阵来代替贝叶斯判别函数中的均值向量和协方差矩阵从而建立一个新的判别函数,最后与传统的最大似然分类结果进行比较,结果表明改进后的最大似然分类法在总体精度、Kappa系数均优于传统的最大似然分类方法。 展开更多
关键词 最大似然分类 模糊C均值聚类 协方差矩阵 模糊划分矩阵
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部