期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
生成式对抗网络GAN的研究进展与展望 被引量:322
1
作者 王坤峰 苟超 +3 位作者 段艳杰 林懿伦 郑心湖 王飞跃 《自动化学报》 EI CSCD 北大核心 2017年第3期321-332,共12页
生成式对抗网络GAN(Generative adversarial networks)目前已经成为人工智能学界一个热门的研究方向.GAN的基本思想源自博弈论的二人零和博弈,由一个生成器和一个判别器构成,通过对抗学习的方式来训练.目的是估测数据样本的潜在分布并... 生成式对抗网络GAN(Generative adversarial networks)目前已经成为人工智能学界一个热门的研究方向.GAN的基本思想源自博弈论的二人零和博弈,由一个生成器和一个判别器构成,通过对抗学习的方式来训练.目的是估测数据样本的潜在分布并生成新的数据样本.在图像和视觉计算、语音和语言处理、信息安全、棋类比赛等领域,GAN正在被广泛研究,具有巨大的应用前景.本文概括了GAN的研究进展,并进行展望.在总结了GAN的背景、理论与实现模型、应用领域、优缺点及发展趋势之后,本文还讨论了GAN与平行智能的关系,认为GAN可以深化平行系统的虚实互动、交互一体的理念,特别是计算实验的思想,为ACP(Artificial societies,computational experiments,and parallel execution)理论提供了十分具体和丰富的算法支持. 展开更多
关键词 生成式对抗网络 生成式模型 零和博弈 对抗学习 平行智能 ACP方法
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部