目的探索基于溶酶体相关基因的预后模型在膀胱癌患者中应用的可行性。方法通过下载癌症基因组图谱(the cancer genome atlas program,TCGA)数据库中膀胱癌数据和基因表达综合数据库(gene expression omnibus,GEO)中GSE13507数据集。利于...目的探索基于溶酶体相关基因的预后模型在膀胱癌患者中应用的可行性。方法通过下载癌症基因组图谱(the cancer genome atlas program,TCGA)数据库中膀胱癌数据和基因表达综合数据库(gene expression omnibus,GEO)中GSE13507数据集。利于R语言通过差异分析、单因素比例风险模型(COX)回归分析筛选出TCGA数据库中与膀胱癌生存相关的差异表达的溶酶体相关基因,采用最小绝对值收敛和选择算子算法(Lasso)回归模型构建出预后模型。根据构建模型风险评分的中位值划分出高、低风险组。使用生存分析比较高、低风险2组患者的生存差异并在GEO数据集中进行验证。采用单因素及多因素Cox回归分析验证风险评分是否为影响膀胱癌患者预后的独立危险因素。受试者工作特征曲线用于评估预后模型预测的准确性。GO及KEGG富集分析用于探索高、低风险组差异基因的生物学功能及信号通路。免疫分析用于探索高、低风险组免疫功能差异。结果共筛选出44个差异表达的溶酶体相关基因,其中9个与预后相关基因用于预后模型构建,生存分析显示低风险组预后明显优于高风险组(P<0.05),并在GEO数据库中得到验证。构建模型预测膀胱癌患者1 a、3 a、5 a生存的ROC曲线下面积(area under the curve,AUC)分别为0.696、0.717、0.738。独立预后分析提示构建模型为膀胱癌患者独立预后影响因素;GO富集分析提示高、低风险组差异基因主要参与细胞结构功能相关;KEGG富集分析提示差异基因主要富集于PI3K-Akt信号通路。免疫分析提示2组患者免疫细胞浸润情况及免疫功能具有明显差异(P<0.05)。结论膀胱癌溶酶体相关基因风险模型能准确有效地预测膀胱癌患者预后。展开更多
文摘目的探索基于溶酶体相关基因的预后模型在膀胱癌患者中应用的可行性。方法通过下载癌症基因组图谱(the cancer genome atlas program,TCGA)数据库中膀胱癌数据和基因表达综合数据库(gene expression omnibus,GEO)中GSE13507数据集。利于R语言通过差异分析、单因素比例风险模型(COX)回归分析筛选出TCGA数据库中与膀胱癌生存相关的差异表达的溶酶体相关基因,采用最小绝对值收敛和选择算子算法(Lasso)回归模型构建出预后模型。根据构建模型风险评分的中位值划分出高、低风险组。使用生存分析比较高、低风险2组患者的生存差异并在GEO数据集中进行验证。采用单因素及多因素Cox回归分析验证风险评分是否为影响膀胱癌患者预后的独立危险因素。受试者工作特征曲线用于评估预后模型预测的准确性。GO及KEGG富集分析用于探索高、低风险组差异基因的生物学功能及信号通路。免疫分析用于探索高、低风险组免疫功能差异。结果共筛选出44个差异表达的溶酶体相关基因,其中9个与预后相关基因用于预后模型构建,生存分析显示低风险组预后明显优于高风险组(P<0.05),并在GEO数据库中得到验证。构建模型预测膀胱癌患者1 a、3 a、5 a生存的ROC曲线下面积(area under the curve,AUC)分别为0.696、0.717、0.738。独立预后分析提示构建模型为膀胱癌患者独立预后影响因素;GO富集分析提示高、低风险组差异基因主要参与细胞结构功能相关;KEGG富集分析提示差异基因主要富集于PI3K-Akt信号通路。免疫分析提示2组患者免疫细胞浸润情况及免疫功能具有明显差异(P<0.05)。结论膀胱癌溶酶体相关基因风险模型能准确有效地预测膀胱癌患者预后。