采用固相反应法制备了Ca_(0.94)Ce_(0.06)Bi_(4)Ti_(4-x)Nb_(x)O_(15)(CCBTN)铋层状高温压电陶瓷,研究了B位Nb掺杂对陶瓷晶体结构、微观形貌、介电、压电性能的影响规律。结果表明:制备的CCBTN陶瓷均具有单一的铋层状结构相,少量Nb掺杂...采用固相反应法制备了Ca_(0.94)Ce_(0.06)Bi_(4)Ti_(4-x)Nb_(x)O_(15)(CCBTN)铋层状高温压电陶瓷,研究了B位Nb掺杂对陶瓷晶体结构、微观形貌、介电、压电性能的影响规律。结果表明:制备的CCBTN陶瓷均具有单一的铋层状结构相,少量Nb掺杂有利于陶瓷压电常数及热稳定性能的提升。当Nb掺杂量x=0.06时,陶瓷具有最高的压电常数(d33=19.2pC·N^(-1)),是纯CBT陶瓷压电常数(d33=8 p C·N^(-1))的2.4倍,且退火至500℃时其压电常数仍保持室温值的90%以上,表现出较优异的热稳定性。同时,该陶瓷具有高的居里温度(Tc=769℃)、低的介电损耗(tanδ=0.65%)及高的电阻率(ρdc=2.0×10^(7)Ω·cm@500℃),是高温压电传感器制作的优异候选材料。展开更多
文摘采用固相反应法制备了Ca_(0.94)Ce_(0.06)Bi_(4)Ti_(4-x)Nb_(x)O_(15)(CCBTN)铋层状高温压电陶瓷,研究了B位Nb掺杂对陶瓷晶体结构、微观形貌、介电、压电性能的影响规律。结果表明:制备的CCBTN陶瓷均具有单一的铋层状结构相,少量Nb掺杂有利于陶瓷压电常数及热稳定性能的提升。当Nb掺杂量x=0.06时,陶瓷具有最高的压电常数(d33=19.2pC·N^(-1)),是纯CBT陶瓷压电常数(d33=8 p C·N^(-1))的2.4倍,且退火至500℃时其压电常数仍保持室温值的90%以上,表现出较优异的热稳定性。同时,该陶瓷具有高的居里温度(Tc=769℃)、低的介电损耗(tanδ=0.65%)及高的电阻率(ρdc=2.0×10^(7)Ω·cm@500℃),是高温压电传感器制作的优异候选材料。