目前基于用户的协同过滤兴趣点推荐模型认为两个用户之间对彼此的影响是相同的;同时,在计算社交用户相似度时仅仅考虑了用户的朋友集合,未考虑用户住所的地理信息。针对上述问题,提出了一种融合用户、社会和地理信息的兴趣点推荐(Fuse U...目前基于用户的协同过滤兴趣点推荐模型认为两个用户之间对彼此的影响是相同的;同时,在计算社交用户相似度时仅仅考虑了用户的朋友集合,未考虑用户住所的地理信息。针对上述问题,提出了一种融合用户、社会和地理信息的兴趣点推荐(Fuse Users、Social and Geographic,FUSG)模型。将非对称用户影响和PageRank算法融入到基于用户的协同过滤算法中,挖掘用户偏好对兴趣点推荐系统的影响;结合社交用户之间的居住距离和用户的共同好友计算用户之间的相似度;利用地理信息挖掘用户签到的地理特征;将改进的协同过滤算法、社交信息与地理信息融合成FUSG模型,进行兴趣点推荐。在真实的数据集上的实验结果表明,FUSG模型不仅能够缓解冷启动问题,且与其他模型相比具有更高的推荐结果。展开更多
兴趣点推荐是一种基于上下文信息的位置感知的个性化推荐。由于用户签到行为具有高稀疏性,为兴趣点推荐的精确度带来了很大的挑战。针对该问题,提出了一种融合相似度和地理信息的兴趣点推荐模型,称为SIGFM。首先利用潜在迪利克雷分配(La...兴趣点推荐是一种基于上下文信息的位置感知的个性化推荐。由于用户签到行为具有高稀疏性,为兴趣点推荐的精确度带来了很大的挑战。针对该问题,提出了一种融合相似度和地理信息的兴趣点推荐模型,称为SIGFM。首先利用潜在迪利克雷分配(Laten Dirichlet Allocation,LDA)模型挖掘用户相关兴趣特征并进行相似性度量,利用Louvain Community Detection(LCD)算法与用户签到数据进行相似性度量,使两种相似度相融合;然后使用地理信息获取用户的签到特征;最后将融合相似度和地理信息结合到一起获得一个新的模型。在真实数据集上的实验结果表明,SIGFM模型有效解决了数据稀疏性与冷启动问题,优于其他POIs的推荐算法。展开更多
文摘目前基于用户的协同过滤兴趣点推荐模型认为两个用户之间对彼此的影响是相同的;同时,在计算社交用户相似度时仅仅考虑了用户的朋友集合,未考虑用户住所的地理信息。针对上述问题,提出了一种融合用户、社会和地理信息的兴趣点推荐(Fuse Users、Social and Geographic,FUSG)模型。将非对称用户影响和PageRank算法融入到基于用户的协同过滤算法中,挖掘用户偏好对兴趣点推荐系统的影响;结合社交用户之间的居住距离和用户的共同好友计算用户之间的相似度;利用地理信息挖掘用户签到的地理特征;将改进的协同过滤算法、社交信息与地理信息融合成FUSG模型,进行兴趣点推荐。在真实的数据集上的实验结果表明,FUSG模型不仅能够缓解冷启动问题,且与其他模型相比具有更高的推荐结果。
文摘兴趣点推荐是一种基于上下文信息的位置感知的个性化推荐。由于用户签到行为具有高稀疏性,为兴趣点推荐的精确度带来了很大的挑战。针对该问题,提出了一种融合相似度和地理信息的兴趣点推荐模型,称为SIGFM。首先利用潜在迪利克雷分配(Laten Dirichlet Allocation,LDA)模型挖掘用户相关兴趣特征并进行相似性度量,利用Louvain Community Detection(LCD)算法与用户签到数据进行相似性度量,使两种相似度相融合;然后使用地理信息获取用户的签到特征;最后将融合相似度和地理信息结合到一起获得一个新的模型。在真实数据集上的实验结果表明,SIGFM模型有效解决了数据稀疏性与冷启动问题,优于其他POIs的推荐算法。