背景:聚乙烯醇和海藻酸钠均为亲水性的聚合物,互溶性好,但其单独使用在材料的弹性和含水率等性能方面不理想。目的:制备聚乙烯醇-海藻酸钠-透明质酸组织工程支架,分析不同重均分子质量和醇解度的聚乙烯醇、不同质量分数的海藻酸钠...背景:聚乙烯醇和海藻酸钠均为亲水性的聚合物,互溶性好,但其单独使用在材料的弹性和含水率等性能方面不理想。目的:制备聚乙烯醇-海藻酸钠-透明质酸组织工程支架,分析不同重均分子质量和醇解度的聚乙烯醇、不同质量分数的海藻酸钠、不同用量的透明质酸对材料含水率和膨胀率的影响。设计、时间及地点:对比观察实验,于2006—10/2008—03在广州暨南大学生物材料省重点实验室,教育部再生医学研究中心重点实验室完成。材料:聚乙烯醇,Mw14500,61500,为BS Chemical Technology产品,聚乙烯醇,Mw 88000,95000,为ACROS ORGANICS产品,聚乙烯醇-124,Mw24000,为广州市医药公司产品,透明质酸为美国Sigma公司产品,NaOH、CaCl2、海藻酸钠为国产分析纯。方法:将不同重均分子质量和醇解度的聚乙烯醇与不同质量分数的海藻酸钠、不同用量的透明质酸复合。主要观察指标:测定其复合材料的含水率和膨胀率,用扫描电镜观察材料内部的组织形态。结果:制备的聚乙烯醇-海藻酸钙-透明质酸复合材料平滑、柔韧,具有弹性。含水率为62.66%~86.64%,膨胀率为145.74%~324.45%。含水率和膨胀率随着聚乙烯醇重均分子质量和醇解度的增加而减小,随着海藻酸钠增加而增加,随着透明质酸的增加变化不太明显。扫描电镜结果提示材料随聚乙烯醇重均分子质量增加,材料中孔数减少。随醇解度增加,材料中孔数增多,分布均匀。随海藻酸钠增加,材料由片状结构变为蓬松的层状结构,孔洞逐渐增多。随透明质酸增加,材料孔洞数量增加,且孔径大小更均一,孔分布更均匀,材料由蓬松多孔结构转变为网状交织多孔结构。结论:聚乙烯醇Mw14500,醇解度98%形成的孔形态结构最好,含水率高,随海藻酸钠和透明质酸的加入,材料具有丰富的网状孔洞结构。展开更多
文摘背景:聚乙烯醇和海藻酸钠均为亲水性的聚合物,互溶性好,但其单独使用在材料的弹性和含水率等性能方面不理想。目的:制备聚乙烯醇-海藻酸钠-透明质酸组织工程支架,分析不同重均分子质量和醇解度的聚乙烯醇、不同质量分数的海藻酸钠、不同用量的透明质酸对材料含水率和膨胀率的影响。设计、时间及地点:对比观察实验,于2006—10/2008—03在广州暨南大学生物材料省重点实验室,教育部再生医学研究中心重点实验室完成。材料:聚乙烯醇,Mw14500,61500,为BS Chemical Technology产品,聚乙烯醇,Mw 88000,95000,为ACROS ORGANICS产品,聚乙烯醇-124,Mw24000,为广州市医药公司产品,透明质酸为美国Sigma公司产品,NaOH、CaCl2、海藻酸钠为国产分析纯。方法:将不同重均分子质量和醇解度的聚乙烯醇与不同质量分数的海藻酸钠、不同用量的透明质酸复合。主要观察指标:测定其复合材料的含水率和膨胀率,用扫描电镜观察材料内部的组织形态。结果:制备的聚乙烯醇-海藻酸钙-透明质酸复合材料平滑、柔韧,具有弹性。含水率为62.66%~86.64%,膨胀率为145.74%~324.45%。含水率和膨胀率随着聚乙烯醇重均分子质量和醇解度的增加而减小,随着海藻酸钠增加而增加,随着透明质酸的增加变化不太明显。扫描电镜结果提示材料随聚乙烯醇重均分子质量增加,材料中孔数减少。随醇解度增加,材料中孔数增多,分布均匀。随海藻酸钠增加,材料由片状结构变为蓬松的层状结构,孔洞逐渐增多。随透明质酸增加,材料孔洞数量增加,且孔径大小更均一,孔分布更均匀,材料由蓬松多孔结构转变为网状交织多孔结构。结论:聚乙烯醇Mw14500,醇解度98%形成的孔形态结构最好,含水率高,随海藻酸钠和透明质酸的加入,材料具有丰富的网状孔洞结构。