发展了基于超分子化学的新方法实现了对石墨炔的原位氮掺杂,通过利用石墨炔与有机共轭分子间强的π–π作用,原位制备了石墨炔/卟吩复合材料薄膜,并用作锂离子电池的负极材料,其比容量增加到了1000 m Ah·g^(-1),该复合材料表现出...发展了基于超分子化学的新方法实现了对石墨炔的原位氮掺杂,通过利用石墨炔与有机共轭分子间强的π–π作用,原位制备了石墨炔/卟吩复合材料薄膜,并用作锂离子电池的负极材料,其比容量增加到了1000 m Ah·g^(-1),该复合材料表现出优良的倍率性能和循环稳定性,为可控制备掺氮石墨炔复合材料提供了新的思路。展开更多
基金supported by the Project of the National Nature Science Foundation of China(20531060 , 20418001 , 20473102)the National Basic Research 973 Program of China (2005CB623602 and 2006CB806201)National Center for Nanoscience and Technology,China
文摘发展了基于超分子化学的新方法实现了对石墨炔的原位氮掺杂,通过利用石墨炔与有机共轭分子间强的π–π作用,原位制备了石墨炔/卟吩复合材料薄膜,并用作锂离子电池的负极材料,其比容量增加到了1000 m Ah·g^(-1),该复合材料表现出优良的倍率性能和循环稳定性,为可控制备掺氮石墨炔复合材料提供了新的思路。
基金supported by the National Basic Research Program of China(2016YFA0200101)the National Natural Science Foundation of China(21633012,60911130231,51233006,61390500)Beijing National Laboratory for Molecular Sciences,China(BNLMS),Chinese Academy of Sciences and the Strategic Priority Research Program of the Chinese Academy of Sciences(XDB30000000,XDB12030100)~~
基金The National Natural Science Foundation of China(Nos.21773012,U2032112,21572234,21661132006,91833304,21905163)National Key Research and Development Program of China(Nos.2019YFA0705900,2017YFA0204701)。