研究插值多项式对|x|α达到最佳逼近度的一种构造方法,证明了对n=2m,m∈N,α∈(0,1],有Fn(α)<Cα(n+2)α,其中F2m(α)=max||x|α-Q2m(x)|,Q2m(x)是以第二类Chebyshev多项式的零点xj=cosjπ2m+2(j=1,2,-1 x 1…2m+1)为插值结点的对|x...研究插值多项式对|x|α达到最佳逼近度的一种构造方法,证明了对n=2m,m∈N,α∈(0,1],有Fn(α)<Cα(n+2)α,其中F2m(α)=max||x|α-Q2m(x)|,Q2m(x)是以第二类Chebyshev多项式的零点xj=cosjπ2m+2(j=1,2,-1 x 1…2m+1)为插值结点的对|x|α的Lagrange插值多项式,Cα是与α有关的常数.展开更多
文摘研究插值多项式对|x|α达到最佳逼近度的一种构造方法,证明了对n=2m,m∈N,α∈(0,1],有Fn(α)<Cα(n+2)α,其中F2m(α)=max||x|α-Q2m(x)|,Q2m(x)是以第二类Chebyshev多项式的零点xj=cosjπ2m+2(j=1,2,-1 x 1…2m+1)为插值结点的对|x|α的Lagrange插值多项式,Cα是与α有关的常数.