目的:探讨基于碘图(IM)的双能CT影像组学模型在新辅助化疗(NAC)后局部进展期胃癌(LAGC)浆膜浸润的术前再分期中的诊断效能。方法:对155例(训练组110例,测试组45例)术前经过标准NAC治疗的LAGC患者进行回顾性研究。所有CT图像由两名放射...目的:探讨基于碘图(IM)的双能CT影像组学模型在新辅助化疗(NAC)后局部进展期胃癌(LAGC)浆膜浸润的术前再分期中的诊断效能。方法:对155例(训练组110例,测试组45例)术前经过标准NAC治疗的LAGC患者进行回顾性研究。所有CT图像由两名放射科医生分析,并进行人工分类。半自动勾画感兴趣区体积(VOI),在IM和120 k Vp图像上分别从每个病变中提取了1226个影像组学特征。采用Spearman相关分析和最小绝对收缩选择算子(LASSO)惩罚Logistic回归过滤不稳定及冗余特征,从而筛选出重要特征。通过多因素Logistic回归分析,分别得到了基于120 kVp选择的特征和120 kVp结合IM选择的特征建立的两个预测模型(120 k Vp和IM-120 kVp)。结果:两种影像组学模型(IM-120 k Vp AUC:训练组,0.953,测试组,0.879;120 kVp AUC:训练组,0.940,测试组,0.831)在训练和测试组中均显示出较高的预测准确度和效能。所有模型在测试组的诊断准确率(IM-120 k Vp:84.4%,120 k Vp:80.0%)均高于人工分类(68.9%)。IM-120 kVp模型在训练(P<0.001)和测试组中的诊断效能(P=0.034)均优于人工分类。结论:基于双能CT的影像组学模型在NAC治疗后LAGC术前再分期鉴别浆膜侵犯方面表现出令人信服的诊断效能。展开更多
文摘目的:探讨基于碘图(IM)的双能CT影像组学模型在新辅助化疗(NAC)后局部进展期胃癌(LAGC)浆膜浸润的术前再分期中的诊断效能。方法:对155例(训练组110例,测试组45例)术前经过标准NAC治疗的LAGC患者进行回顾性研究。所有CT图像由两名放射科医生分析,并进行人工分类。半自动勾画感兴趣区体积(VOI),在IM和120 k Vp图像上分别从每个病变中提取了1226个影像组学特征。采用Spearman相关分析和最小绝对收缩选择算子(LASSO)惩罚Logistic回归过滤不稳定及冗余特征,从而筛选出重要特征。通过多因素Logistic回归分析,分别得到了基于120 kVp选择的特征和120 kVp结合IM选择的特征建立的两个预测模型(120 k Vp和IM-120 kVp)。结果:两种影像组学模型(IM-120 k Vp AUC:训练组,0.953,测试组,0.879;120 kVp AUC:训练组,0.940,测试组,0.831)在训练和测试组中均显示出较高的预测准确度和效能。所有模型在测试组的诊断准确率(IM-120 k Vp:84.4%,120 k Vp:80.0%)均高于人工分类(68.9%)。IM-120 kVp模型在训练(P<0.001)和测试组中的诊断效能(P=0.034)均优于人工分类。结论:基于双能CT的影像组学模型在NAC治疗后LAGC术前再分期鉴别浆膜侵犯方面表现出令人信服的诊断效能。