期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于改进层次全局模糊熵和MCFS的滚动轴承损伤识别 被引量:2
1
作者 柏世兵 林金亮 杨玉华 《机电工程》 CAS 北大核心 2023年第7期1024-1030,共7页
针对传统的多尺度特征提取方法无法捕捉振动信号高频故障信息的问题,提出了一种基于改进层次全局模糊熵(IHGFE)全局全频段特征提取、多聚类特征选择(MCFS)特征降维和支持向量机分类的滚动轴承故障诊断方法。首先,提出了能够捕捉振动信... 针对传统的多尺度特征提取方法无法捕捉振动信号高频故障信息的问题,提出了一种基于改进层次全局模糊熵(IHGFE)全局全频段特征提取、多聚类特征选择(MCFS)特征降维和支持向量机分类的滚动轴承故障诊断方法。首先,提出了能够捕捉振动信号低频到高频的全局特征的IHGFE非线性动力学方法,并将其用于滚动轴承的故障特征提取;然后,利用MCFS对初始特征向量进行了维数约简和优化,构建了低维且对故障敏感的故障特征向量;最后,建立了基于支持向量机的多故障分类器,实现了滚动轴承损伤的智能化识别,并通过两个滚动轴承实验进行了对比分析。研究结果表明:IHGFE的分类准确率和识别稳定性均优于对比方法,证明了其在特征提取中能够在一定程度上解决现有方法无法同时考虑信号的高频特征和全局特征的问题,可为进一步扩展模糊熵方法在滚动轴承损伤识别中的应用提供参考。 展开更多
关键词 轴承故障诊断 改进层次全局模糊熵 多聚类特征选择 支持向量机 特征降维 故障分类器
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部