为了在高速网络环境下对大容量网络流量进行准确和快速的分类,以检测分布式拒绝服务(Distributed Denial of Service,DDoS)攻击,本文提出一种基于并行积累排序算法和主动学习的DDoS攻击检测算法.该技术采用并行积累排序算法对流量特征...为了在高速网络环境下对大容量网络流量进行准确和快速的分类,以检测分布式拒绝服务(Distributed Denial of Service,DDoS)攻击,本文提出一种基于并行积累排序算法和主动学习的DDoS攻击检测算法.该技术采用并行积累排序算法对流量特征进行积累排序来选择最佳特征子集,通过专家模块以无监督的方式选择适当的实例来训练用于检测DDoS攻击流量的支持向量机(SVM)二值分类器,从而实现从数据集中选择小批量训练样本来产生高精度的网络流量分类.实验结果表明,与现有方法相比,本文算法在分类准确率和执行速度方面均优于现有方法.展开更多
文摘为了在高速网络环境下对大容量网络流量进行准确和快速的分类,以检测分布式拒绝服务(Distributed Denial of Service,DDoS)攻击,本文提出一种基于并行积累排序算法和主动学习的DDoS攻击检测算法.该技术采用并行积累排序算法对流量特征进行积累排序来选择最佳特征子集,通过专家模块以无监督的方式选择适当的实例来训练用于检测DDoS攻击流量的支持向量机(SVM)二值分类器,从而实现从数据集中选择小批量训练样本来产生高精度的网络流量分类.实验结果表明,与现有方法相比,本文算法在分类准确率和执行速度方面均优于现有方法.