期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
城市交通流量预测模型的研究
被引量:
1
1
作者
李劲松
易明俊
《微型电脑应用》
2020年第9期92-96,共5页
城市交通流量预测是具有社会价值的重要课题之一。由于城市交通流量预测涉及到一个复杂的非线性数据模式,因此精确预测的难度较大。为此,提出将支持向量回归模型(SVR)和连续蚁群优化算法(ACO)相结合对城市短期交通流量进行预测的思路。...
城市交通流量预测是具有社会价值的重要课题之一。由于城市交通流量预测涉及到一个复杂的非线性数据模式,因此精确预测的难度较大。为此,提出将支持向量回归模型(SVR)和连续蚁群优化算法(ACO)相结合对城市短期交通流量进行预测的思路。仿真结果表明,与常见的季节自回归滑动平均时间序列模型的预测方法相比,该模型能得到更准确的预测结果。
展开更多
关键词
交通流量预测
支持向量回归
连续蚁群优化算法
下载PDF
职称材料
题名
城市交通流量预测模型的研究
被引量:
1
1
作者
李劲松
易明俊
机构
武汉市公安局交通管理局科技处
武汉市公安局
江岸区
交通
大队
出处
《微型电脑应用》
2020年第9期92-96,共5页
文摘
城市交通流量预测是具有社会价值的重要课题之一。由于城市交通流量预测涉及到一个复杂的非线性数据模式,因此精确预测的难度较大。为此,提出将支持向量回归模型(SVR)和连续蚁群优化算法(ACO)相结合对城市短期交通流量进行预测的思路。仿真结果表明,与常见的季节自回归滑动平均时间序列模型的预测方法相比,该模型能得到更准确的预测结果。
关键词
交通流量预测
支持向量回归
连续蚁群优化算法
Keywords
traffic flow prediction
support vector regression
continuous ant colony optimization algorithm
分类号
TP393 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
城市交通流量预测模型的研究
李劲松
易明俊
《微型电脑应用》
2020
1
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部