期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
应用人工智能识别超广角眼底照相多病种的初步研究
被引量:
1
1
作者
孙功鹏
王晓玲
+6 位作者
徐立璋
李嫦
王雯钰
易佐慧子
郑红梅
李志清
陈长征
《中华眼底病杂志》
CAS
CSCD
北大核心
2022年第2期132-138,共7页
目的构建一个小样本超广角眼底照相(UWFI)多疾病分类人工智能模型,初步探究人工智能对UWFI多病种分类任务的能力。方法回顾性研究。2016年至2021年于武汉大学人民医院眼科就诊并行UWFI检查的1123例患者的1608张图像用于UWFI多疾病分类...
目的构建一个小样本超广角眼底照相(UWFI)多疾病分类人工智能模型,初步探究人工智能对UWFI多病种分类任务的能力。方法回顾性研究。2016年至2021年于武汉大学人民医院眼科就诊并行UWFI检查的1123例患者的1608张图像用于UWFI多疾病分类人工智能模型构建。其中,糖尿病视网膜病变(DR)、视网膜静脉阻塞(RVO)、病理性近视(PM)、视网膜脱离(RD)、正常眼底图像分别为320、330、319、268、371张。来自天津医科大学眼科医院106例患者的135张图像作为外部测试集。选取EfficientNet-B7作为主干网络,对纳入的UWFI图像进行分类分析。使用受试者工作特征曲线及曲线下面积(AUC)、灵敏度、特异性、准确率评估分类模型在测试集上的表现,所有数据均使用数值及95%可信区间(CI)表达。将数据集在网络模型ResNet50、ResNet101上进行训练,并在外部测试集上进行测试,对比观察EfficientNet与上述两种模型的性能。结果UWFI多疾病分类人工智能模型在内部、外部测试集上的总分类准确率分别为92.57%(95%CI 91.13%~92.92%)、88.89%(95%CI 88.11%~90.02%)。其中,正常眼底分别为96.62%、92.59%,DR分别为95.95%、95.56%,RVO分别为96.62%、98.52%,PM分别为98.65%、97.04%,RD分别为97.30%、94.07%。在内部、外部测试集上的平均AUC分别为0.993、0.983。其中,正常眼底分别为0.994、0.939,DR分别为0.999、0.995,RVO分别为0.985、1.000,PM分别为0.991、0.993,RD分别为0.995、0.990。内部、外部测试集上EfficientNet性能均较ResNet50、ResNet101模型更佳。结论初步构建的小样本UWFI多疾病分类人工智能模型对常见眼底疾病的分类水平较高,可能具有辅助临床筛查及诊断的价值。
展开更多
关键词
视网膜疾病
人工智能
深度学习
超广角眼底照相
原文传递
题名
应用人工智能识别超广角眼底照相多病种的初步研究
被引量:
1
1
作者
孙功鹏
王晓玲
徐立璋
李嫦
王雯钰
易佐慧子
郑红梅
李志清
陈长征
机构
武汉
大学人民医院
眼
科中心
武汉爱眼帮科技有限公司
天津医科大学
眼
科医院、
眼
视光学院、
眼
科研究所
出处
《中华眼底病杂志》
CAS
CSCD
北大核心
2022年第2期132-138,共7页
文摘
目的构建一个小样本超广角眼底照相(UWFI)多疾病分类人工智能模型,初步探究人工智能对UWFI多病种分类任务的能力。方法回顾性研究。2016年至2021年于武汉大学人民医院眼科就诊并行UWFI检查的1123例患者的1608张图像用于UWFI多疾病分类人工智能模型构建。其中,糖尿病视网膜病变(DR)、视网膜静脉阻塞(RVO)、病理性近视(PM)、视网膜脱离(RD)、正常眼底图像分别为320、330、319、268、371张。来自天津医科大学眼科医院106例患者的135张图像作为外部测试集。选取EfficientNet-B7作为主干网络,对纳入的UWFI图像进行分类分析。使用受试者工作特征曲线及曲线下面积(AUC)、灵敏度、特异性、准确率评估分类模型在测试集上的表现,所有数据均使用数值及95%可信区间(CI)表达。将数据集在网络模型ResNet50、ResNet101上进行训练,并在外部测试集上进行测试,对比观察EfficientNet与上述两种模型的性能。结果UWFI多疾病分类人工智能模型在内部、外部测试集上的总分类准确率分别为92.57%(95%CI 91.13%~92.92%)、88.89%(95%CI 88.11%~90.02%)。其中,正常眼底分别为96.62%、92.59%,DR分别为95.95%、95.56%,RVO分别为96.62%、98.52%,PM分别为98.65%、97.04%,RD分别为97.30%、94.07%。在内部、外部测试集上的平均AUC分别为0.993、0.983。其中,正常眼底分别为0.994、0.939,DR分别为0.999、0.995,RVO分别为0.985、1.000,PM分别为0.991、0.993,RD分别为0.995、0.990。内部、外部测试集上EfficientNet性能均较ResNet50、ResNet101模型更佳。结论初步构建的小样本UWFI多疾病分类人工智能模型对常见眼底疾病的分类水平较高,可能具有辅助临床筛查及诊断的价值。
关键词
视网膜疾病
人工智能
深度学习
超广角眼底照相
Keywords
Retinal diseases
Artificial intelligence
Deep learning
Ultra-widefield fundus images
分类号
R77 [医药卫生—眼科]
原文传递
题名
作者
出处
发文年
被引量
操作
1
应用人工智能识别超广角眼底照相多病种的初步研究
孙功鹏
王晓玲
徐立璋
李嫦
王雯钰
易佐慧子
郑红梅
李志清
陈长征
《中华眼底病杂志》
CAS
CSCD
北大核心
2022
1
原文传递
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部