期刊文献+
共找到9篇文章
< 1 >
每页显示 20 50 100
铝合金微乳化加工润滑液的研究
1
作者 朱焱 周五萍 邹济 《润滑与密封》 CAS CSCD 北大核心 2018年第3期109-112,共4页
研究铝合金微乳化加工润滑液的组成,探讨表面活性剂、助表面活性剂对乳液稳定性的影响以及润滑添加剂对微乳液润滑性能的影响。通过四球机、Timken试验机对研制的微乳化加工润滑液进行检测,结果表明该微乳液具有较好的润滑性能。腐蚀试... 研究铝合金微乳化加工润滑液的组成,探讨表面活性剂、助表面活性剂对乳液稳定性的影响以及润滑添加剂对微乳液润滑性能的影响。通过四球机、Timken试验机对研制的微乳化加工润滑液进行检测,结果表明该微乳液具有较好的润滑性能。腐蚀试验证明,研制的微乳化液对铝及铝合金无腐蚀,能满足铝合金切削润滑的需要。 展开更多
关键词 铝合金 微乳化 润滑液 表面活性剂 腐蚀
下载PDF
小苏打生产中新型碳化结晶器的介绍 被引量:3
2
作者 马春花 李荣杰 《盐业与化工》 CAS 2015年第1期5-8,共4页
文章从生产原理、工艺流程、工艺条件、关键设备等方面介绍适用于高浓度二氧化碳气的碳化结晶器工艺,并与传统碳化塔工艺进行比较。
关键词 小苏打 碳化结晶器 碳化塔
下载PDF
Mn/beta and Mn/ZSM-5 for the low-temperature selective catalytic reduction of NO with ammonia: Effect of manganese precursors 被引量:12
3
作者 Wenjin Xu Guangxu Zhang +4 位作者 Hanwei Chen Guomeng Zhang Yang Han Yichuan Chang Peng Gong 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2018年第1期118-127,共10页
Two series of Mn/beta and Mn/ZSM‐5catalysts were prepared to study the influence of how different Mn precursors,introduced to the respective parent zeolites by wet impregnation,affected the selective catalytic reduct... Two series of Mn/beta and Mn/ZSM‐5catalysts were prepared to study the influence of how different Mn precursors,introduced to the respective parent zeolites by wet impregnation,affected the selective catalytic reduction(SCR)of NO by NH3across a low reaction temperature window of50–350°C.In this study,the catalysts were characterized using N2adsorption/desorption,X‐ray diffraction,X‐ray fluorescence,H2temperature‐programmed reduction,NH3temperature‐programmed desorption and X‐ray photoelectron spectroscopy.As the manganese chloride precursor only partially decomposed this primarily resulted in the formation of MnCl2in addition to the presence of low levels of crystalline Mn3O4,which resulted in poor catalytic performance.However,the manganese nitrate precursor formed crystalline MnO2as the major phase in addition to a minor presence of unconverted Mn‐nitrate.Furthermore,manganese acetate resulted principally in a mixture of amorphous Mn2O3and MnO2,and crystalline Mn3O4.From all the catalysts screened,the test performance data showed Mn/beta‐Ac to exhibit the highest NO conversion(97.5%)at240°C,which remained>90%across a temperature window of220–350°C.The excellent catalytic performance was ascribed to the enrichment of highly dispersed MnOx(Mn2O3and MnO2)species that act as the active phase in the NH3‐SCR process.Furthermore,together with a suitable amount of weakly acidic centers,higher concentration of surface manganese and a greater presence of surface labile oxygen groups,SCR performance was collectively enhanced at low temperature.?2018,Dalian Institute of Chemical Physics,Chinese Academy of Sciences.Published by Elsevier B.V.All rights reserved. 展开更多
关键词 Mn/beta Mn/ZSM‐5 Low‐temperature Catalytic performance Selective catalytic reduction Manganese precursors
下载PDF
Ni nanoparticles as electron-transfer mediators and NiS_x as interfacial active sites for coordinative enhancement of H_2-evolution performance of TiO_2 被引量:7
4
作者 Ping Wang Shunqiu Xu +1 位作者 Feng Chen Huogen Yu 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2019年第3期343-351,共9页
The development of efficient photocatalytic H2-evolution materials requires both rapid electron transfer and an effective interfacial catalysis reaction for H2 production. In addition to the well-known noble metals, l... The development of efficient photocatalytic H2-evolution materials requires both rapid electron transfer and an effective interfacial catalysis reaction for H2 production. In addition to the well-known noble metals, low-cost and earth-abundant non-noble metals can also act as electron- transfer mediators to modify photocatalysts. However, as almost all non-noble metals lack the interfacial catalytic active sites required for the H2-evolution reaction, the enhancement of the photocatalytic performance is limited. Therefore, the development of new interfacial active sites on metal-modified photocatalysts is of considerable importance. In this study, to enhance the photocatalytic evolution of H2 by Ni-modified TiO2, the formation of NiSx as interfacial active sites was promoted on the surface of Ni nanoparticles. Specifically, the co-modified TiO2/Ni-NiSx photocatalysts were prepared via a two-step process involving the photoinduced deposition of Ni on the TiO2 surface and the subsequent formation of NiSx on the Ni surface by a hydrothermal reaction method. It was found that the TiO2/Ni-NiSx photocatalysts exhibited enhanced photocatalytic H2-evolution activity. In particular, TiO2/Ni-NiSx(30%) showed the highest photocatalytic rate (223.74 μmol h.1), which was greater than those of TiO2, TiO2/Ni, and TiO2/NiSx by factors of 22.2, 8.0, and 2.2, respectively. The improved H2-evolution performance of TiO2/Ni-NiSx could be attributed to the excellent synergistic effect of Ni and NiSx, where Ni nanoparticles function as effective mediators to transfer electrons from the TiO2 surface and NiSx serves as interfacial active sites to capture H+ ions from solution and promote the interfacial H2-evolution reaction. The synergistic effect of the non-noble metal cocatalyst and the interfacial active sites may provide new insights for the design of highly efficient photocatalytic materials. 展开更多
关键词 Titania Electron-transfer mediator Interfacial active site Synergistic effect Photocatalyic H2 evolution
下载PDF
Sulfur-mediated photodeposition synthesis of NiS cocatalyst for boosting H2-evolution performance of g-C3N4 photocatalyst 被引量:7
5
作者 Min Wang Jingjing Cheng +3 位作者 Xuefei Wang Xuekun Hong Jiajie Fan Huogen Yu 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 2021年第1期37-45,共9页
Modification of nickel sulfide cocatalysts is considered to be a promising approach for efficient enhancement of the photocatalytic hydrogen production performance of g-C3N4.Providing more NiS cocatalyst to function a... Modification of nickel sulfide cocatalysts is considered to be a promising approach for efficient enhancement of the photocatalytic hydrogen production performance of g-C3N4.Providing more NiS cocatalyst to function as active sites of g-C3N4 is still highly desirable.To realize this goal,in this work,a facile sulfur-mediated photodeposition approach was developed.Specifically,photogenerated electrons excited by visible light reduce the S molecules absorbed on g-C3N4 surface to S^2‒,and subsequently NiS cocatalyst is formed in situ on the g-C3N4 surface by a combination of Ni2+and S2‒due to their small solubility product constant(Ksp=3.2×10^‒19).This approach has several advantages.The NiS cocatalyst is clearly in situ deposited on the photogenerated electron transfer sites of g-C3N4,and thus provides more active sites for H2 production.In addition,this method utilizes solar energy with mild reaction conditions at room temperature.Consequently,the synthesized NiS/g-C3N4 photocatalyst achieves excellent hydrogen generation performance with the performance of the optimal sample(244μmol h^‒1 g^‒1)close to that of 1 wt%Pt/g-C3N4(316μmol h^‒1 g^‒1,a well-known excellent photocatalyst).More importantly,the present sulfur-mediated photodeposition route is versatile and facile and can be used to deposit various metal sulfides such as CoSx,CuSx and AgSx on the g-C3N4 surface,and all the resulting metal sulfide-modified g-C3N4 photocatalysts exhibit improved H2-production performance.Our study offers a novel insight for the synthesis of high-efficiency photocatalysts. 展开更多
关键词 g-C3N4 NIS Co-catalyst Sulfur-mediated photodeposition H2 Photocatalysis
下载PDF
Selective adsorption of thiocyanate anions on Ag-modified g-C_3N_4 for enhanced photocatalytic hydrogen evolution 被引量:4
6
作者 Feng Chen Hui Yang +2 位作者 Wei Luo Ping Wang Huogen Yu 《Chinese Journal of Catalysis》 CSCD 北大核心 2017年第12期1990-1998,共9页
Silver‐modified semiconductor photocatalysts typically exhibit enhanced photocatalytic activitytoward the degradation of organic substances.In comparison,their hydrogen‐evolution rates arerelatively low owing to poo... Silver‐modified semiconductor photocatalysts typically exhibit enhanced photocatalytic activitytoward the degradation of organic substances.In comparison,their hydrogen‐evolution rates arerelatively low owing to poor interfacial catalytic reactions to producing hydrogen.In the presentstudy,thiocyanate anions(SCN–)as interfacial catalytic active sites were selectively adsorbed ontothe Ag surface of g‐C3N4/Ag photocatalyst to promote interfacial H2‐evolution reactions.The thiocyanate‐modified g‐C3N4/Ag(g‐C3N4/Ag‐SCN)photocatalysts were synthesized via photodepositionof metallic Ag on g‐C3N4and subsequent selective adsorption of SCN– ions on the Ag surface by animpregnation method.The resulting g‐C3N4/Ag‐SCN photocatalysts exhibited considerably higherphotocatalytic H2‐evolution activity than the g‐C3N4,g‐C3N4/Ag,and g‐C3N4/SCN photocatalysts.Furthermore,the g‐C3N4/Ag‐SCN photocatalyst displayed the highest H2‐evolution rate(3.9μmolh?1)when the concentration of the SCN– ions was adjusted to0.3mmol L?1.The H2‐evolution rateobtained was higher than those of g‐C3N4(0.15μmol h?1)and g‐C3N4/Ag(0.71μmol h?1).Consideringthe enhanced performance of g‐C3N4/Ag upon minimal addition of SCN– ions,a synergistic effectof metallic Ag and SCN– ions is proposed―the Ag nanoparticles act as an effective electron‐transfermediator for the steady capture and rapid transportation of photogenerated electrons,while theadsorbed SCN– ions serve as an interfacial active site to effectively absorb protons from solution andpromote rapid interfacial H2‐evolution reactions.Considering the present facile synthesis and itshigh efficacy,the present work may provide new insights into preparing high‐performance photocatalytic materials 展开更多
关键词 PHOTOCATALYSIS g‐C3N4/Ag Selective adsorption Interfacial active site Photocatalytic hydrogen evolution
下载PDF
Robust MOF-253-derived N-doped carbon confinement of Pt single nanocrystal electrocatalysts for oxygen evolution reaction 被引量:1
7
作者 Hellen Gabriela Rivera Monestel Ibrahim Saana Amiinu +3 位作者 Andrés Alvarado González Zonghua Pu BibiMaryam Mousavi Shichun Mu 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2020年第5期839-846,共8页
Although carbon-supported platinum(Pt/C) is still considered the most active electrocatalyst for hydrogen evolution reaction(HER) and oxygen reduction reaction(ORR), its applications in metal–air batteries as a catho... Although carbon-supported platinum(Pt/C) is still considered the most active electrocatalyst for hydrogen evolution reaction(HER) and oxygen reduction reaction(ORR), its applications in metal–air batteries as a cathode catalyst, or for oxygen generation via water splitting electrolysis as an anode catalyst is mainly constrained by the insufficient kinetic activity and stability in the oxygen evolution reaction(OER). Here, MOF-253-derived nitrogen-doped carbon(N/C)-confined Pt single nanocrystals(Pt@N/C) have been synthesized and shown to be efficient catalysts for the OER. Even with low Pt mass loading of 6.1 wt%(Pt@N/C-10), the catalyst exhibits greatly improved activity and long-time stability as an efficient OER catalyst. Such high catalytic performance is attributed to the core-shell structure relationship, in which the active N-doped-C shell not only provides a protective shield to avoid rapid Pt nanocrystal oxidation at high potentials and inhibits the Pt migration and agglomeration, but also improves the conductivity and charge transfer kinetics. 展开更多
关键词 PT MOF-253 Carbon confinement Oxygen evolution reaction ELECTROCATALYST
下载PDF
Palladium-copper nanodot as novel H_(2)-evolution cocatalyst:Optimizing interfacial hydrogen desorption for highly efficient photocatalytic activity 被引量:1
8
作者 Jiachao Xu Duoduo Gao +4 位作者 Huogen Yu Ping Wang Bichen Zhu Linxi Wang Jiajie Fan 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 2022年第2期215-225,共11页
Noble metal palladium(Pd)is well‐known as excellent photocatalytic cocatalyst,but its strong adsorption to hydrogen causes its limited H2‐evolution activity.In this study,the transition metal Cu was successfully int... Noble metal palladium(Pd)is well‐known as excellent photocatalytic cocatalyst,but its strong adsorption to hydrogen causes its limited H2‐evolution activity.In this study,the transition metal Cu was successfully introduced into the metallic Pd to weaken its hydrogen‐adsorption strength to improve its interfacial H_(2)‐evolution rate via the Pd‐Cu alloying effect.Herein,the ultrasmall Pd_(100−x)Cu_(x) alloy nanodots(2−5 nm)as a novel H_(2)‐evolution cocatalyst were integrated with the TiO_(2) through a simple NaH_(2)PO_(2)‐mediated co‐deposition route.The resulting Pd_(100−x)Cu_(x)/TiO_(2) sample shows the significantly enhanced photocatalytic H_(2)‐generation performance(269.2μmol h^(−1)),which is much higher than the bare TiO2.Based on in situ irradiated X‐ray photoelectron spectroscopy(ISI‐XPS)and density functional theory(DFT)results,the as‐formed Pd_(100−x)Cu_(x) alloy nanodots can effectively promote the separation of photo‐generated charges and weak the adsorption strength for hydrogen to optimize the process of hydrogen‐desorption process on Pd_(75)Cu_(25) alloy,thus leading to high photocatalytic H_(2)‐evolution activity.Herein,the weakened H adsorption of Pd_(75)Cu_(25) cocatalyst can be ascribed to the formation of electron‐rich Pd after the introduction of weak electronegativity Cu.The present work about optimizing electronic structure for promoting interfacial reaction activity provides a new sight for the development of the highly efficient photocatalysts. 展开更多
关键词 Photocatalytic H_(2)evolution TiO_(2) Pd100-xCux alloy Electron-rich Pd Hydrogen desorption
下载PDF
基于内含肽的自剪切技术在膜蛋白研究中的应用 被引量:1
9
作者 吴瑞倩 杨俊 谢浩 《生命的化学》 CAS CSCD 2015年第2期200-205,共6页
膜蛋白对于细胞的物质运输、信号传递以及能量转化有重要意义,其研究通常需要大量结构稳定和有活性的膜蛋白。基于内含肽的蛋白质自剪切特性,可以设计自剪切标签以及构建具有特定结构的膜蛋白,为膜蛋白的结构和功能研究提供的新的研究... 膜蛋白对于细胞的物质运输、信号传递以及能量转化有重要意义,其研究通常需要大量结构稳定和有活性的膜蛋白。基于内含肽的蛋白质自剪切特性,可以设计自剪切标签以及构建具有特定结构的膜蛋白,为膜蛋白的结构和功能研究提供的新的研究思路和方法。本文对基于内含肽的蛋白质自剪切技术在膜蛋白结构和功能研究中的最新进展进行了简介。 展开更多
关键词 膜蛋白 内含肽 自剪切
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部