文中针对多船会遇避碰决策中过渡依赖单一寻优决策的问题采用了加入自适应权重的樽海鞘群优化算法(weight salp swarm algorithm, WSSA),在算法中融入国际海上避碰规则(convention on the international regulations for presenting col...文中针对多船会遇避碰决策中过渡依赖单一寻优决策的问题采用了加入自适应权重的樽海鞘群优化算法(weight salp swarm algorithm, WSSA),在算法中融入国际海上避碰规则(convention on the international regulations for presenting collisions at sea, COLREGs)和良好船艺的要求.使用速度障碍法判断船舶的碰撞危险度并将多船会遇避让的过程中避让的安全性、经济性以及船舶领域侵入程度作为建立避碰决策的目标函数.算法测试的结果中,WSSA与原始樽海鞘群算法(SSA)以及经典粒子群算法(partide swam optimization, PSO)相比较,WSSA算法在收敛的精度和速度方面都明显优于SSA和PSO算法.结果表明:WSSA在寻找最优碰撞路线的过程中迭代的次数更少,精度更高.展开更多
针对传统循环神经网络提取船舶轨迹序列特征能力不足,导致预测结果与实际轨迹之间的误差较大,影响船舶调度与航行安全的问题,将双向门控循环单元(Bidirectional Gated Recurrent Unit, Bi-GRU)神经网络应用到船舶轨迹预测中。利用Bi-GR...针对传统循环神经网络提取船舶轨迹序列特征能力不足,导致预测结果与实际轨迹之间的误差较大,影响船舶调度与航行安全的问题,将双向门控循环单元(Bidirectional Gated Recurrent Unit, Bi-GRU)神经网络应用到船舶轨迹预测中。利用Bi-GRU神经网络模型具有的前瞻特性以及大量船舶自动识别系统(Automatic Identification System, AIS)数据,提出基于Bi-GRU的船舶轨迹预测模型。结果表明,Bi-GRU的预测精度较门控循环单元(Gated Recurrent Unit, GRU)有明显提升,均方误差降低13.0%,均方根误差降低6.5%,平均绝对误差降低16.5%。研究成果可为提高船舶交通服务系统安全管理水平、判断船舶交通风险程度及智能船舶碰撞预警提供理论支撑。展开更多
为解决大数据下船舶会遇识别算法效率不高且存在误判等问题,提出一种融合国际海上避碰规则(International Regulations for Preventing Collisions at Sea,COLREGs)的带噪声的基于密度的空间聚类(density-based spatial clustering of a...为解决大数据下船舶会遇识别算法效率不高且存在误判等问题,提出一种融合国际海上避碰规则(International Regulations for Preventing Collisions at Sea,COLREGs)的带噪声的基于密度的空间聚类(density-based spatial clustering of applications with noise,DBSCAN)算法,建立船舶会遇识别模型。在DBSCAN算法对邻域内的船舶数量进行统计时,计算船舶间的最近会遇距离(distance to closest point of approach,DCPA)和最近会遇时间(time to closest point of approach,TCPA),初步筛选邻域内的噪声点;基于模糊综合评价模型计算船舶会遇风险,对邻域内的船舶进行二次筛选,实现船舶会遇态势的提取。结果表明:改进后的DBSCAN算法过滤掉传统DBSCAN算法识别到的非会遇局面,并且在同一会遇局面下的船舶数量均保持在4艘以内;输出的会遇船舶风险演变趋势对实际水域内高风险船舶的监控适用性较好,能有效辅助船舶避碰。所提识别模型对保障航行安全和提高海事监管效率具有重要意义。展开更多
文摘文中针对多船会遇避碰决策中过渡依赖单一寻优决策的问题采用了加入自适应权重的樽海鞘群优化算法(weight salp swarm algorithm, WSSA),在算法中融入国际海上避碰规则(convention on the international regulations for presenting collisions at sea, COLREGs)和良好船艺的要求.使用速度障碍法判断船舶的碰撞危险度并将多船会遇避让的过程中避让的安全性、经济性以及船舶领域侵入程度作为建立避碰决策的目标函数.算法测试的结果中,WSSA与原始樽海鞘群算法(SSA)以及经典粒子群算法(partide swam optimization, PSO)相比较,WSSA算法在收敛的精度和速度方面都明显优于SSA和PSO算法.结果表明:WSSA在寻找最优碰撞路线的过程中迭代的次数更少,精度更高.
文摘为解决大数据下船舶会遇识别算法效率不高且存在误判等问题,提出一种融合国际海上避碰规则(International Regulations for Preventing Collisions at Sea,COLREGs)的带噪声的基于密度的空间聚类(density-based spatial clustering of applications with noise,DBSCAN)算法,建立船舶会遇识别模型。在DBSCAN算法对邻域内的船舶数量进行统计时,计算船舶间的最近会遇距离(distance to closest point of approach,DCPA)和最近会遇时间(time to closest point of approach,TCPA),初步筛选邻域内的噪声点;基于模糊综合评价模型计算船舶会遇风险,对邻域内的船舶进行二次筛选,实现船舶会遇态势的提取。结果表明:改进后的DBSCAN算法过滤掉传统DBSCAN算法识别到的非会遇局面,并且在同一会遇局面下的船舶数量均保持在4艘以内;输出的会遇船舶风险演变趋势对实际水域内高风险船舶的监控适用性较好,能有效辅助船舶避碰。所提识别模型对保障航行安全和提高海事监管效率具有重要意义。