期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
CNN卷积计算在移动GPU上的加速研究
被引量:
5
1
作者
王湘新
时洋
文梅
《计算机工程与科学》
CSCD
北大核心
2018年第1期34-39,共6页
卷积神经网络(CNN)凭借其优秀的表现正在诸如图像分类、语音识别等领域里扮演着越来越重要的角色,已经有一些研究人员想要将这个深度学习过程复制到手机上。但是,由于CNN巨大的计算量,移植程序的性能一直难以令人满意。为了探讨如何解...
卷积神经网络(CNN)凭借其优秀的表现正在诸如图像分类、语音识别等领域里扮演着越来越重要的角色,已经有一些研究人员想要将这个深度学习过程复制到手机上。但是,由于CNN巨大的计算量,移植程序的性能一直难以令人满意。为了探讨如何解决这一问题,借助MXNet这样一个深度学习的框架在手机上实现了CNN的前向过程,并且将注意力放在了使用手机上另一个强大的计算设备——GPU上。最终选择使用OpenCL通用编程框架将前向过程中最耗时的卷积操作利用矩阵乘来完成,并转移到GPU上进行。在此基础之上还针对手机GPU做了一些优化。最终,实验结果显示我们成功地将前向过程的时间降低到了原来时间的一半。
展开更多
关键词
CNN
手机
移动GPU
快速算法
OPENCL
下载PDF
职称材料
题名
CNN卷积计算在移动GPU上的加速研究
被引量:
5
1
作者
王湘新
时洋
文梅
机构
武警湖南省消防总队信息中心
国防科技大学计算机学院
出处
《计算机工程与科学》
CSCD
北大核心
2018年第1期34-39,共6页
基金
国家自然科学基金(61272145)
文摘
卷积神经网络(CNN)凭借其优秀的表现正在诸如图像分类、语音识别等领域里扮演着越来越重要的角色,已经有一些研究人员想要将这个深度学习过程复制到手机上。但是,由于CNN巨大的计算量,移植程序的性能一直难以令人满意。为了探讨如何解决这一问题,借助MXNet这样一个深度学习的框架在手机上实现了CNN的前向过程,并且将注意力放在了使用手机上另一个强大的计算设备——GPU上。最终选择使用OpenCL通用编程框架将前向过程中最耗时的卷积操作利用矩阵乘来完成,并转移到GPU上进行。在此基础之上还针对手机GPU做了一些优化。最终,实验结果显示我们成功地将前向过程的时间降低到了原来时间的一半。
关键词
CNN
手机
移动GPU
快速算法
OPENCL
Keywords
CNN
mobile phone
mobile GPU
fast algorithm
OpenCL
分类号
TP391.4 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
CNN卷积计算在移动GPU上的加速研究
王湘新
时洋
文梅
《计算机工程与科学》
CSCD
北大核心
2018
5
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部