基于会话的推荐旨在利用短时匿名会话预测用户行为.现有结合图神经网络与对比学习的会话推荐模型大多采用联合优化交叉熵损失与对比学习损失的方法,但二者所起作用相似,同时需要构建大量复杂的正负样本,为模型带来负担.此外,简单的线性...基于会话的推荐旨在利用短时匿名会话预测用户行为.现有结合图神经网络与对比学习的会话推荐模型大多采用联合优化交叉熵损失与对比学习损失的方法,但二者所起作用相似,同时需要构建大量复杂的正负样本,为模型带来负担.此外,简单的线性预测器不能较好地预测带有用户随机行为的数据.针对上述问题,文中提出结合自对比图神经网络与双预测器的会话推荐模型(Session-Based Recommendation Model with Self Contrastive Graph Neural Network and Dual Predictor,SCGNN).首先,使用双视图建模原始会话,采用改进的图神经网络学习物品嵌入与会话嵌入,并通过自对比学习优化物品表示.然后,提出用户行为感知因子,应对用户随机行为带来的影响.最后,采用决策森林预测器与线性预测器对物品进行预测,并提出软标签生成策略,通过协同过滤与当前会话类似的历史会话以辅助预测.在Tmall、Diginetica、Nowplaying数据集上的实验表明文中模型的有效性.展开更多
文摘基于会话的推荐旨在利用短时匿名会话预测用户行为.现有结合图神经网络与对比学习的会话推荐模型大多采用联合优化交叉熵损失与对比学习损失的方法,但二者所起作用相似,同时需要构建大量复杂的正负样本,为模型带来负担.此外,简单的线性预测器不能较好地预测带有用户随机行为的数据.针对上述问题,文中提出结合自对比图神经网络与双预测器的会话推荐模型(Session-Based Recommendation Model with Self Contrastive Graph Neural Network and Dual Predictor,SCGNN).首先,使用双视图建模原始会话,采用改进的图神经网络学习物品嵌入与会话嵌入,并通过自对比学习优化物品表示.然后,提出用户行为感知因子,应对用户随机行为带来的影响.最后,采用决策森林预测器与线性预测器对物品进行预测,并提出软标签生成策略,通过协同过滤与当前会话类似的历史会话以辅助预测.在Tmall、Diginetica、Nowplaying数据集上的实验表明文中模型的有效性.