The active sites of monodisperse transition metal Ni-clusters were anchored on carbon nitride(CN)by an in situ photoreduction deposition method to promote the efficient separation of photogenerated charges and achieve...The active sites of monodisperse transition metal Ni-clusters were anchored on carbon nitride(CN)by an in situ photoreduction deposition method to promote the efficient separation of photogenerated charges and achieve high-efficiency photocatalytic activity for hydrogen evolution.The Ni-cluster/CN exhibited a photocatalytic hydrogen production rate of 16.5 mmol·h^(-1)·g^(-1) and a total turnover frequency(TOF(H_(2)))value of 461.14 h^(-1).X-ray absorption spectroscopy based on synchrotron radiation indicated that CN had two reaction centers to form stable interface interactions with monodispersed Ni-clusters,in which carbon can act as an electron acceptor,while nitrogen can act as an electron donor.Meanwhile,the hybrid electronic structure of the Ni-cluster/CN system was constructed,which was favorable for photocatalytic activity for hydrogen production.An in-depth understanding of the interfacial interaction between CN and Ni-clusters will have important reference significance on the mechanistic study of development based on the cocatalyst.展开更多
文摘The active sites of monodisperse transition metal Ni-clusters were anchored on carbon nitride(CN)by an in situ photoreduction deposition method to promote the efficient separation of photogenerated charges and achieve high-efficiency photocatalytic activity for hydrogen evolution.The Ni-cluster/CN exhibited a photocatalytic hydrogen production rate of 16.5 mmol·h^(-1)·g^(-1) and a total turnover frequency(TOF(H_(2)))value of 461.14 h^(-1).X-ray absorption spectroscopy based on synchrotron radiation indicated that CN had two reaction centers to form stable interface interactions with monodispersed Ni-clusters,in which carbon can act as an electron acceptor,while nitrogen can act as an electron donor.Meanwhile,the hybrid electronic structure of the Ni-cluster/CN system was constructed,which was favorable for photocatalytic activity for hydrogen production.An in-depth understanding of the interfacial interaction between CN and Ni-clusters will have important reference significance on the mechanistic study of development based on the cocatalyst.