The effects of Y addition on the structural and mechanical properties of CuZrAl bulk metallic glass(BMG) were studied.The results show that the glass forming ability of CuZrAl system is improved by the addition of Y...The effects of Y addition on the structural and mechanical properties of CuZrAl bulk metallic glass(BMG) were studied.The results show that the glass forming ability of CuZrAl system is improved by the addition of Y and the fracture strength decreases with Y addition due to the reduction of binding energy induced by Y.The fracture surface is dominated by vein-like patterns in Cu45Zr48Al7 bulk metallic glass,and changes to smooth regions in Cu46Zr42Al7Y5 BMG.TEM observation shows that Cu45Zr48Al7 BMG has a composite microstructure of nanocrystalline phases dispersed in amorphous matrix.However,the Cu46Zr42Al7Y5 BMG shows a fully amorphous structure.展开更多
The CuZrAl bulk metallic glass with minor-addition of Fe was prepared by rapid quenching method. The structures were examined by X-ray diffraction (XRD). The effect of Fe on the glass-forming ability was studied by ...The CuZrAl bulk metallic glass with minor-addition of Fe was prepared by rapid quenching method. The structures were examined by X-ray diffraction (XRD). The effect of Fe on the glass-forming ability was studied by differential scanning calorimetry (DSC). The minor-addition of Fe obviously extends the supercooled liquid region ΔTx. The plastic strain of the Cu44Zr48Al7Fe bulk metallic glass is about 1.5%. The microstructures were examined by transmission electron microscopy (TEM). It is found that when 1%-2% Fe (mole fraction) were introduced into the CuZrAl alloy matrix, nanoscale phase separation occurs in the as-prepared Cu44Zr48Al7Fe bulk metallic glass.展开更多
The first-principle calculations were performed to investigate the structural,mechanical,electronic and thermal properties of the binary ductile intermetallic compound CeAg with B2(CsCl) structure.The calculated val...The first-principle calculations were performed to investigate the structural,mechanical,electronic and thermal properties of the binary ductile intermetallic compound CeAg with B2(CsCl) structure.The calculated value of lattice constant a0 for CeAg with generalized gradient approximation is 3.713-,which is in better agreement with experimental data than local spin density approximation.The negative energy of formation implies that CeAg with B2 structure is thermodynamically stable phase.The greater separation between the d bands of Ce and Ag results in weaker bond hybridization of Ce d—Ag d,which prevents formation of directional covalent bonding.The three independent elastic constants(C11,C12 and C44) are derived and the bulk modulus,shear modulus,elastic modulus,anisotropy factor,and Poisson ratio are determined to be 57.6 GPa,15.8 GPa,43.4 GPa,3.15 and 0.374,respectively.The elastic constants meet all the mechanical stability criteria.The value of Pugh's criterion is 3.65.The ductility of CeAg is predicted if Pugh's criterion is greater than 1.75.Furthermore,the variations of volume,bulk modulus,heat capacity,and thermal expansion coefficient with temperature and/or pressure were calculated and discussed.展开更多
基金Project (2010ZDJH10) supported by the NUST Research FundingProject (BK2007213) supported by the Natural Science Foundation of Jiangsu Province,China
文摘The effects of Y addition on the structural and mechanical properties of CuZrAl bulk metallic glass(BMG) were studied.The results show that the glass forming ability of CuZrAl system is improved by the addition of Y and the fracture strength decreases with Y addition due to the reduction of binding energy induced by Y.The fracture surface is dominated by vein-like patterns in Cu45Zr48Al7 bulk metallic glass,and changes to smooth regions in Cu46Zr42Al7Y5 BMG.TEM observation shows that Cu45Zr48Al7 BMG has a composite microstructure of nanocrystalline phases dispersed in amorphous matrix.However,the Cu46Zr42Al7Y5 BMG shows a fully amorphous structure.
基金Project (2010ZDJH10) supported by the Nanjing University of Science and Technology Research Funding, ChinaProject (BK2007213) supported by the Natural Science Foundation of Jiangsu Province, China
文摘The CuZrAl bulk metallic glass with minor-addition of Fe was prepared by rapid quenching method. The structures were examined by X-ray diffraction (XRD). The effect of Fe on the glass-forming ability was studied by differential scanning calorimetry (DSC). The minor-addition of Fe obviously extends the supercooled liquid region ΔTx. The plastic strain of the Cu44Zr48Al7Fe bulk metallic glass is about 1.5%. The microstructures were examined by transmission electron microscopy (TEM). It is found that when 1%-2% Fe (mole fraction) were introduced into the CuZrAl alloy matrix, nanoscale phase separation occurs in the as-prepared Cu44Zr48Al7Fe bulk metallic glass.
基金Project(2011CB605504) supported by the National Basic Research Program of ChinaProject(50871054) supported by the National Natural Science Foundation of ChinaProject(20093219110035) supported by the Specialized Research Fund for the Doctoral Program of Higher Education of China
文摘The first-principle calculations were performed to investigate the structural,mechanical,electronic and thermal properties of the binary ductile intermetallic compound CeAg with B2(CsCl) structure.The calculated value of lattice constant a0 for CeAg with generalized gradient approximation is 3.713-,which is in better agreement with experimental data than local spin density approximation.The negative energy of formation implies that CeAg with B2 structure is thermodynamically stable phase.The greater separation between the d bands of Ce and Ag results in weaker bond hybridization of Ce d—Ag d,which prevents formation of directional covalent bonding.The three independent elastic constants(C11,C12 and C44) are derived and the bulk modulus,shear modulus,elastic modulus,anisotropy factor,and Poisson ratio are determined to be 57.6 GPa,15.8 GPa,43.4 GPa,3.15 and 0.374,respectively.The elastic constants meet all the mechanical stability criteria.The value of Pugh's criterion is 3.65.The ductility of CeAg is predicted if Pugh's criterion is greater than 1.75.Furthermore,the variations of volume,bulk modulus,heat capacity,and thermal expansion coefficient with temperature and/or pressure were calculated and discussed.