期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于嗅觉可视化技术的眉茶等级分类方法
被引量:
1
1
作者
丁煜函
葛东营
+2 位作者
荆磊
Muhammad SHAHZAD
江辉
《食品科学》
EI
CAS
CSCD
北大核心
2022年第24期335-341,共7页
为了快速、准确地对眉茶等级进行分类,提出了一种基于嗅觉可视化技术的眉茶等级快速分类方法。首先,根据卟啉显色反应预实验结果,选定了12种显色效果明显的卟啉指示剂制备嗅觉可视化传感器阵列,通过该传感器阵列与不同等级的眉茶茶汤进...
为了快速、准确地对眉茶等级进行分类,提出了一种基于嗅觉可视化技术的眉茶等级快速分类方法。首先,根据卟啉显色反应预实验结果,选定了12种显色效果明显的卟啉指示剂制备嗅觉可视化传感器阵列,通过该传感器阵列与不同等级的眉茶茶汤进行反应,获取不同的特征图像。然后,对特征图像数据进行主成分分析和降维,将得到的不同维数的主成分分析结果作为输入变量,构建支持向量机(support vector machine,SVM)眉茶等级分类模型。最后,引入3种群体智能优化算法(萤火虫算法、灰狼优化算法、布谷鸟算法)对SVM分类模型的惩罚因子c和核函数参数g进行优化。结果显示:未经优化的SVM分类模型对测试集的分类正确率为80%,所需的主成分个数为12个;经过优化的SVM模型的分类正确率均有所提升,其中经过布谷鸟算法优化的SVM模型对测试集的分类正确率达到了93.3%,且所需的主成分个数减少为6个。这表明应用嗅觉可视化技术能够实现对眉茶等级的分类,而通过群体智能优化算法优化SVM分类模型可以显著增强模型的性能,提高分类正确率。
展开更多
关键词
眉茶
嗅觉可视化
等级分类
支持向量机
群体智能优化算法
下载PDF
职称材料
题名
基于嗅觉可视化技术的眉茶等级分类方法
被引量:
1
1
作者
丁煜函
葛东营
荆磊
Muhammad SHAHZAD
江辉
机构
江苏大学高效能电机系统与智能控制研究院
江苏
大学
电气信息工程学院
出处
《食品科学》
EI
CAS
CSCD
北大核心
2022年第24期335-341,共7页
基金
“十三五”国家重点研发计划重点专项(2017YFD0400805)。
文摘
为了快速、准确地对眉茶等级进行分类,提出了一种基于嗅觉可视化技术的眉茶等级快速分类方法。首先,根据卟啉显色反应预实验结果,选定了12种显色效果明显的卟啉指示剂制备嗅觉可视化传感器阵列,通过该传感器阵列与不同等级的眉茶茶汤进行反应,获取不同的特征图像。然后,对特征图像数据进行主成分分析和降维,将得到的不同维数的主成分分析结果作为输入变量,构建支持向量机(support vector machine,SVM)眉茶等级分类模型。最后,引入3种群体智能优化算法(萤火虫算法、灰狼优化算法、布谷鸟算法)对SVM分类模型的惩罚因子c和核函数参数g进行优化。结果显示:未经优化的SVM分类模型对测试集的分类正确率为80%,所需的主成分个数为12个;经过优化的SVM模型的分类正确率均有所提升,其中经过布谷鸟算法优化的SVM模型对测试集的分类正确率达到了93.3%,且所需的主成分个数减少为6个。这表明应用嗅觉可视化技术能够实现对眉茶等级的分类,而通过群体智能优化算法优化SVM分类模型可以显著增强模型的性能,提高分类正确率。
关键词
眉茶
嗅觉可视化
等级分类
支持向量机
群体智能优化算法
Keywords
Mee tea
olfactory visualization
grade classification
support vector machine
swarm intelligence optimization algorithm
分类号
S237 [农业科学—农业机械化工程]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于嗅觉可视化技术的眉茶等级分类方法
丁煜函
葛东营
荆磊
Muhammad SHAHZAD
江辉
《食品科学》
EI
CAS
CSCD
北大核心
2022
1
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部