为提高新能源汽车锂电池跨工况下SOC(State of Charge,SOC)的预测精度以提升其运行可靠性,针对不同工况下的锂电池特征,笔者提出了一种深度学习预测模型。该模型基于卷积神经网络(CNN)和双向长短期记忆网络(BILSTM),对跨工况锂电池SOC...为提高新能源汽车锂电池跨工况下SOC(State of Charge,SOC)的预测精度以提升其运行可靠性,针对不同工况下的锂电池特征,笔者提出了一种深度学习预测模型。该模型基于卷积神经网络(CNN)和双向长短期记忆网络(BILSTM),对跨工况锂电池SOC进行估计。笔者采集了锂电池在不同工况下的温度、电流、电压和SOC等数据。然后,构建了CNN-BILSTM深度学习模型,并在联邦城市运行工况(Federal Urban Driving Schedule,FUDS)工况下进行训练测试。将该方法应用于动态应力测试工况(Dynamic Stress Test,DST)下,进行跨工况SOC估计。试验结果表明,本文提出的CNN-BILSTM模型能够有效预测锂电池的SOC值,在跨工况下也显示出良好的预测性能和较强的泛化能力。展开更多